SchNetPack: A deep learning toolbox for atomistic systems KT Schütt, P Kessel, M Gastegger, KA Nicoli, A Tkatchenko, KR Müller Journal of chemical theory and computation 15 (1), 448-455, 2018 | 428 | 2018 |
Estimation of thermodynamic observables in lattice field theories with deep generative models KA Nicoli, CJ Anders, L Funcke, T Hartung, K Jansen, P Kessel, ... Physical Review Letters 126 (3), 032001, 2021 | 115 | 2021 |
Asymptotically unbiased estimation of physical observables with neural samplers KA Nicoli, S Nakajima, N Strodthoff, W Samek, KR Müller, P Kessel Phys. Rev. E 101 (2), 023304, 2020 | 114 | 2020 |
Modern applications of machine learning in quantum sciences A Dawid, J Arnold, B Requena, A Gresch, M Płodzień, K Donatella, ... arXiv preprint arXiv:2204.04198, 2022 | 87* | 2022 |
Gradients should stay on path: better estimators of the reverse-and forward KL divergence for normalizing flows L Vaitl, KA Nicoli, S Nakajima, P Kessel Machine Learning: Science and Technology 3 (4), 045006, 2022 | 22 | 2022 |
Detecting and Mitigating Mode-Collapse for Flow-based Sampling of Lattice Field Theories KA Nicoli, CJ Anders, T Hartung, K Jansen, P Kessel, S Nakajima Phys. Rev. D 108, 114501 108 (11), 2023 | 20 | 2023 |
Path-gradient estimators for continuous normalizing flows L Vaitl, KA Nicoli, S Nakajima, P Kessel International conference on machine learning, 21945-21959, 2022 | 13 | 2022 |
Machine Learning of Thermodynamic Observables in the Presence of Mode Collapse KA Nicoli, C Anders, L Funcke, T Hartung, K Jansen, P Kessel, ... The 38th International Symposium on Lattice Field Theory, 2022 | 12 | 2022 |
Physics-informed bayesian optimization of variational quantum circuits K Nicoli, CJ Anders, L Funcke, T Hartung, K Jansen, S Kühn, KR Müller, ... Advances in Neural Information Processing Systems 36, 2024 | 8 | 2024 |
Modern applications of machine learning in quantum sciences, arXiv e-prints A Dawid, J Arnold, B Requena, A Gresch, M Płodzień, K Donatella, ... arXiv preprint arXiv:2204.04198, 2022 | 6 | 2022 |
Comment on" Solving Statistical Mechanics Using VANs": Introducing saVANt-VANs Enhanced by Importance and MCMC Sampling KA Nicoli, P Kessel, N Strodthoff, W Samek, KR Müller, S Nakajima arXiv preprint arXiv:1903.11048, 2019 | 4 | 2019 |
Analysis of Atomistic Representations Using Weighted Skip-Connections KA Nicoli, P Kessel, M Gastegger, KT Schütt arXiv preprint arXiv:1810.09751, 2018 | 2 | 2018 |
NeuLat: a toolbox for neural samplers in lattice field theories KA Nicoli, CJ Anders, L Funcke, K Jansen, S Nakajima, P Kessel The 40th International Symposium on Lattice Field Theory, 2023 | 1* | 2023 |
Flow-based Sampling for Entanglement Entropy and the Machine Learning of Defects A Bulgarelli, E Cellini, K Jansen, S Kühn, A Nada, S Nakajima, KA Nicoli, ... arXiv preprint arXiv:2410.14466, 2024 | | 2024 |
Deep generative models for thermodynamics of spin systems and field theories KA Nicoli Technische Universität Berlin, 2023 | | 2023 |
Adaptive Observation Cost Control for Variational Quantum Eigensolvers CJ Anders, KA Nicoli, B Wu, N Elosegui, S Pedrielli, L Funcke, K Jansen, ... Forty-first International Conference on Machine Learning, 0 | | |