Follow
Kim A. Nicoli, Ph.D.
Title
Cited by
Cited by
Year
SchNetPack: A deep learning toolbox for atomistic systems
KT Schütt, P Kessel, M Gastegger, KA Nicoli, A Tkatchenko, KR Müller
Journal of chemical theory and computation 15 (1), 448-455, 2018
4652018
Estimation of thermodynamic observables in lattice field theories with deep generative models
KA Nicoli, CJ Anders, L Funcke, T Hartung, K Jansen, P Kessel, ...
Physical Review Letters 126 (3), 032001, 2021
1302021
Asymptotically unbiased estimation of physical observables with neural samplers
KA Nicoli, S Nakajima, N Strodthoff, W Samek, KR Müller, P Kessel
Phys. Rev. E 101 (2), 023304, 2020
1282020
Modern applications of machine learning in quantum sciences
A Dawid, J Arnold, B Requena, A Gresch, M Płodzień, K Donatella, ...
arXiv preprint arXiv:2204.04198, 2022
98*2022
Gradients should stay on path: better estimators of the reverse-and forward KL divergence for normalizing flows
L Vaitl, KA Nicoli, S Nakajima, P Kessel
Machine Learning: Science and Technology 3 (4), 045006, 2022
302022
Detecting and Mitigating Mode-Collapse for Flow-based Sampling of Lattice Field Theories
KA Nicoli, CJ Anders, T Hartung, K Jansen, P Kessel, S Nakajima
Phys. Rev. D 108, 114501 108 (11), 2023
282023
Physics-informed bayesian optimization of variational quantum circuits
K Nicoli, CJ Anders, L Funcke, T Hartung, K Jansen, S Kühn, KR Müller, ...
Advances in Neural Information Processing Systems 36, 18341-18376, 2023
152023
Path-gradient estimators for continuous normalizing flows
L Vaitl, KA Nicoli, S Nakajima, P Kessel
International conference on machine learning, 21945-21959, 2022
152022
Machine Learning of Thermodynamic Observables in the Presence of Mode Collapse
KA Nicoli, C Anders, L Funcke, T Hartung, K Jansen, P Kessel, ...
The 38th International Symposium on Lattice Field Theory, 2022
122022
Modern applications of machine learning in quantum sciences, arXiv e-prints
A Dawid, J Arnold, B Requena, A Gresch, M Płodzień, K Donatella, ...
arXiv preprint arXiv:2204.04198, 2022
62022
Comment on" Solving Statistical Mechanics Using VANs": Introducing saVANt-VANs Enhanced by Importance and MCMC Sampling
KA Nicoli, P Kessel, N Strodthoff, W Samek, KR Müller, S Nakajima
arXiv preprint arXiv:1903.11048, 2019
42019
Analysis of Atomistic Representations Using Weighted Skip-Connections
KA Nicoli, P Kessel, M Gastegger, KT Schütt
arXiv preprint arXiv:1810.09751, 2018
32018
Adaptive observation cost control for variational quantum Eigensolvers
CJ Anders, KA Nicoli, B Wu, N Elosegui, S Pedrielli, L Funcke, K Jansen, ...
arXiv preprint arXiv:2502.01704, 2025
22025
Flow-based Sampling for Entanglement Entropy and the Machine Learning of Defects
A Bulgarelli, E Cellini, K Jansen, S Kühn, A Nada, S Nakajima, KA Nicoli, ...
arXiv preprint arXiv:2410.14466, 2024
22024
NeuLat: a toolbox for neural samplers in lattice field theories
KA Nicoli, CJ Anders, L Funcke, K Jansen, S Nakajima, P Kessel
The 40th International Symposium on Lattice Field Theory, 2023
22023
Multilevel Generative Samplers for Investigating Critical Phenomena
A Singha, E Cellini, KA Nicoli, K Jansen, S Kühn, S Nakajima
arXiv preprint arXiv:2503.08918, 2025
12025
Deep generative models for thermodynamics of spin systems and field theories
KA Nicoli
PQDT-Global, 2023
12023
Bayesian Parameter Shift Rule in Variational Quantum Eigensolvers
S Pedrielli, CJ Anders, L Funcke, K Jansen, KA Nicoli, S Nakajima
arXiv preprint arXiv:2502.02625, 2025
2025
Machine-Learning-Enhanced Optimization of Noise-Resilient Variational Quantum Eigensolvers
KA Nicoli, LJ Wagner, L Funcke
arXiv preprint arXiv:2501.17689, 2025
2025
Simulating the Hubbard Model with Equivariant Normalizing Flows
D Schuh, J Kreit, E Berkowitz, L Funcke, T Luu, KA Nicoli, M Rodekamp
arXiv preprint arXiv:2501.07371, 2025
2025
The system can't perform the operation now. Try again later.
Articles 1–20