Understanding the topology and the geometry of the space of persistence diagrams via optimal partial transport V Divol, T Lacombe Journal of Applied and Computational Topology, 1-53, 2020 | 73* | 2020 |
The density of expected persistence diagrams and its kernel based estimation V Divol, F Chazal Journal of Computational Geometry 10 (2), 127–153-127–153, 2019 | 62* | 2019 |
On the choice of weight functions for linear representations of persistence diagrams V Divol, W Polonik Journal of Applied and Computational Topology, 2019 | 38 | 2019 |
Minimax estimation of discontinuous optimal transport maps: The semi-discrete case AA Pooladian, V Divol, J Niles-Weed International Conference on Machine Learning, 28128-28150, 2023 | 24 | 2023 |
Measure estimation on manifolds: an optimal transport approach V Divol | 24* | |
Minimax adaptive estimation in manifold inference V Divol Electronic Journal of Statistics 15 (2), 5888-5932, 2021 | 21 | 2021 |
Optimal transport map estimation in general function spaces V Divol, J Niles-Weed, AA Pooladian arXiv preprint arXiv:2212.03722, 2022 | 18 | 2022 |
Estimation and Quantization of Expected Persistence Diagrams V Divol, T Lacombe International Conference on Machine Learning, 2021 | 10 | 2021 |
A short proof on the rate of convergence of the empirical measure for the Wasserstein distance V Divol arXiv preprint arXiv:2101.08126, 2021 | 8 | 2021 |
Tight stability bounds for entropic Brenier maps V Divol, J Niles-Weed, AA Pooladian arXiv preprint arXiv:2404.02855, 2024 | 3 | 2024 |
Critical points of the distance function to a generic submanifold C Arnal, D Cohen-Steiner, V Divol arXiv preprint arXiv:2312.13147, 2023 | 3 | 2023 |
Wasserstein convergence of Čech persistence diagrams for samplings of submanifolds C Arnal, D Cohen-Steiner, V Divol | 1 | 2024 |
Demographic parity in regression and classification within the unawareness framework V Divol, S Gaucher arXiv preprint arXiv:2409.02471, 2024 | | 2024 |