Follow
Andrew Trask
Andrew Trask
University of Oxford and OpenMined
Verified email at openmined.org - Homepage
Title
Cited by
Cited by
Year
The future of digital health with federated learning
N Rieke, J Hancox, W Li, F Milletari, HR Roth, S Albarqouni, S Bakas, ...
NPJ digital medicine 3 (1), 1-7, 2020
17542020
A generic framework for privacy preserving deep learning
T Ryffel, A Trask, M Dahl, B Wagner, J Mancuso, D Rueckert, ...
arXiv preprint arXiv:1811.04017, 2018
4882018
Toward trustworthy AI development: mechanisms for supporting verifiable claims
M Brundage, S Avin, J Wang, H Belfield, G Krueger, G Hadfield, H Khlaaf, ...
arXiv preprint arXiv:2004.07213, 2020
3822020
End-to-end privacy preserving deep learning on multi-institutional medical imaging
G Kaissis, A Ziller, J Passerat-Palmbach, T Ryffel, D Usynin, A Trask, ...
Nature Machine Intelligence 3 (6), 473-484, 2021
3262021
Neural arithmetic logic units
A Trask, F Hill, SE Reed, J Rae, C Dyer, P Blunsom
Advances in neural information processing systems 31, 2018
2472018
Systems and methods for neural language modeling
A Trask, D Gilmore, M Russell
US Patent 10,339,440, 2019
2432019
sense2vec - A Fast and Accurate Method for Word Sense Disambiguation In Neural Word Embeddings
A Trask, P Michalak, J Liu
arXiv preprint arXiv:1511.06388, 2015
2202015
Pysyft: A library for easy federated learning
A Ziller, A Trask, A Lopardo, B Szymkow, B Wagner, E Bluemke, ...
Federated Learning Systems: Towards Next-Generation AI, 111-139, 2021
2002021
Sample efficient adaptive text-to-speech
Y Chen, Y Assael, B Shillingford, D Budden, S Reed, H Zen, Q Wang, ...
arXiv preprint arXiv:1809.10460, 2018
1602018
Grokking deep learning
AW Trask
Simon and Schuster, 2019
1222019
Neither private nor fair: Impact of data imbalance on utility and fairness in differential privacy
T Farrand, F Mireshghallah, S Singh, A Trask
Proceedings of the 2020 workshop on privacy-preserving machine learning in …, 2020
1012020
Modeling order in neural word embeddings at scale
A Trask, D Gilmore, M Russell
International Conference on Machine Learning, 2266-2275, 2015
682015
Dp-sgd vs pate: Which has less disparate impact on model accuracy?
A Uniyal, R Naidu, S Kotti, S Singh, PJ Kenfack, F Mireshghallah, A Trask
arXiv preprint arXiv:2106.12576, 2021
362021
Beyond privacy trade-offs with structured transparency
A Trask, E Bluemke, B Garfinkel, CG Cuervas-Mons, A Dafoe
arXiv preprint arXiv:2012.08347, 2020
282020
The ethics of advanced ai assistants
I Gabriel, A Manzini, G Keeling, LA Hendricks, V Rieser, H Iqbal, ...
arXiv preprint arXiv:2404.16244, 2024
202024
Syft 0.5: A platform for universally deployable structured transparency
AJ Hall, M Jay, T Cebere, B Cebere, KL van der Veen, G Muraru, T Xu, ...
arXiv preprint arXiv:2104.12385, 2021
122021
Privacy-preserving medical image analysis
A Ziller, J Passerat-Palmbach, T Ryffel, D Usynin, A Trask, IDLC Junior, ...
arXiv preprint arXiv:2012.06354, 2020
112020
Benchmarking differentially private residual networks for medical imagery
S Singh, H Sikka, S Kotti, A Trask
arXiv preprint arXiv:2005.13099, 2020
112020
Exploring the Relevance of Data Privacy-Enhancing Technologies for AI Governance Use Cases
E Bluemke, T Collins, B Garfinkel, A Trask
arXiv preprint arXiv:2303.08956, 2023
72023
Sensitivity analysis in differentially private machine learning using hybrid automatic differentiation
A Ziller, D Usynin, M Knolle, K Prakash, A Trask, R Braren, M Makowski, ...
arXiv preprint arXiv:2107.04265, 2021
52021
The system can't perform the operation now. Try again later.
Articles 1–20