Intensity-Free Learning of Temporal Point Processes O Shchur, M Biloš, S Günnemann International Conference on Learning Representations, 2020 | 180 | 2020 |
Lag-llama: Towards foundation models for time series forecasting K Rasul, A Ashok, AR Williams, A Khorasani, G Adamopoulos, ... R0-FoMo: Robustness of Few-shot and Zero-shot Learning in Large Foundation …, 2023 | 84 | 2023 |
Neural flows: Efficient alternative to neural ODEs M Biloš, J Sommer, SS Rangapuram, T Januschowski, S Günnemann Advances in neural information processing systems 34, 21325-21337, 2021 | 70 | 2021 |
Modeling temporal data as continuous functions with stochastic process diffusion M Biloš, K Rasul, A Schneider, Y Nevmyvaka, S Günnemann International Conference on Machine Learning, 2452-2470, 2023 | 53* | 2023 |
Uncertainty on asynchronous time event prediction M Biloš, B Charpentier, S Günnemann Neural Information Processing Systems, 2019 | 45 | 2019 |
Lag-llama: Towards foundation models for probabilistic time series forecasting K Rasul, A Ashok, AR Williams, H Ghonia, R Bhagwatkar, A Khorasani, ... Preprint, 2024 | 34 | 2024 |
Fast and flexible temporal point processes with triangular maps O Shchur, N Gao, M Biloš, S Günnemann Neural Information Processing Systems, 2020 | 34 | 2020 |
Scalable Normalizing Flows for Permutation Invariant Densities M Biloš, S Günnemann International Conference on Machine Learning, 2021 | 29* | 2021 |
Deep representation learning and clustering of traffic scenarios N Harmening, M Biloš, S Günnemann arXiv preprint arXiv:2007.07740, 2020 | 19 | 2020 |
Add and thin: Diffusion for temporal point processes D Lüdke, M Biloš, O Shchur, M Lienen, S Günnemann Advances in Neural Information Processing Systems 36, 56784-56801, 2023 | 7 | 2023 |
Variational Schr\" odinger Diffusion Models W Deng, W Luo, Y Tan, M Biloš, Y Chen, Y Nevmyvaka, RTQ Chen arXiv preprint arXiv:2405.04795, 2024 | 6 | 2024 |
Lag-llama: Towards foundation models for probabilistic time series forecasting, 2024 K Rasul, A Ashok, AR Williams, H Ghonia, R Bhagwatkar, A Khorasani, ... URL https://arxiv. org/abs/2310.08278, 0 | 5 | |
Irregularly-Sampled Time Series Modeling with Spline Networks M Biloš, E Ramneantu, S Günnemann arXiv preprint arXiv:2210.10630, 2022 | 3 | 2022 |
Towards linking social media profiles with user’s WiFi preferred network list A Dagelić, M Čagalj, T Perković, M Biloš Ad Hoc Networks 107, 102244, 2020 | 3 | 2020 |
Recurrent Interpolants for Probabilistic Time Series Prediction Y Chen, M Biloš, S Mittal, W Deng, K Rasul, A Schneider arXiv preprint arXiv:2409.11684, 2024 | | 2024 |
Machine Learning for Irregularly-Sampled Time Series M Biloš Technische Universität München, 2024 | | 2024 |