The liver tumor segmentation benchmark (lits) P Bilic, PF Christ, E Vorontsov, G Chlebus, H Chen, Q Dou, CW Fu, X Han, ... arXiv preprint arXiv:1901.04056, 2019 | 145 | 2019 |
Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: the VESSEL12 study RD Rudyanto, S Kerkstra, EM Van Rikxoort, C Fetita, PY Brillet, C Lefevre, ... Medical image analysis 18 (7), 1217-1232, 2014 | 115 | 2014 |
Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing G Chlebus, A Schenk, JH Moltz, B van Ginneken, HK Hahn, H Meine Scientific reports 8 (1), 1-7, 2018 | 62 | 2018 |
Segmentation-based partial volume correction for volume estimation of solid lesions in CT F Heckel, H Meine, JH Moltz, JM Kuhnigk, JT Heverhagen, A Kießling, ... IEEE transactions on medical imaging 33 (2), 462-480, 2013 | 38 | 2013 |
Neural network-based automatic liver tumor segmentation with random forest-based candidate filtering G Chlebus, H Meine, JH Moltz, A Schenk arXiv preprint arXiv:1706.00842, 2017 | 31 | 2017 |
Principles and methods for automatic and semi-automatic tissue segmentation in MRI data L Wang, T Chitiboi, H Meine, M Günther, HK Hahn Magnetic Resonance Materials in Physics, Biology and Medicine 29 (2), 95-110, 2016 | 28 | 2016 |
The GeoMap: A unified representation for topology and geometry H Meine, U Köthe International Workshop on Graph-Based Representations in Pattern Recognition …, 2005 | 22 | 2005 |
Microstructural analysis of lignocellulosic fiber networks T Walther, K Terzic, T Donath, H Meine, F Beckmann, H Thoemen Developments in X-ray Tomography V 6318, 631812, 2006 | 21 | 2006 |
A topological sampling theorem for robust boundary reconstruction and image segmentation H Meine, U Köthe, P Stelldinger Discrete Applied Mathematics 157 (3), 524-541, 2009 | 18 | 2009 |
Image segmentation with the exact watershed transform H Meine, U Köthe VIIP, 400-405, 2005 | 14 | 2005 |
Topologically correct image segmentation using alpha shapes P Stelldinger, U Köthe, H Meine International Conference on Discrete Geometry for Computer Imagery, 542-554, 2006 | 13 | 2006 |
Deep learning based automatic liver tumor segmentation in CT with shape-based post-processing G Chlebus, A Schenk, JH Moltz, B van Ginneken, HK Hahn, H Meine | 12 | 2018 |
On the evaluation of segmentation editing tools F Heckel, JH Moltz, H Meine, B Geisler, A Kießling, M D’Anastasi, ... Journal of Medical Imaging 1 (3), 034005, 2014 | 12 | 2014 |
Deep learning based segmentation of organs of the female pelvis in CBCT scans for adaptive radiotherapy using CT and CBCT data A Hänsch, V Dicken, T Grass, T Morgas, J Klein, H Meine, HK Hahn Berlin: Computer Assisted Radiology and Surgery–CARS 2018, 133, 2018 | 11 | 2018 |
The GeoMap representation: on topologically correct sub-pixel image analysis H Meine University of Hamburg, 2009 | 10 | 2009 |
Reducing inter-observer variability and interaction time of MR liver volumetry by combining automatic CNN-based liver segmentation and manual corrections G Chlebus, H Meine, S Thoduka, N Abolmaali, B van Ginneken, HK Hahn, ... PloS one 14 (5), e0217228, 2019 | 9 | 2019 |
Accurate CT-MR image registration for deep brain stimulation: a multi-observer evaluation study J Rühaak, A Derksen, S Heldmann, M Hallmann, H Meine Medical Imaging 2015: Image Processing 9413, 941337, 2015 | 9 | 2015 |
Evaluation of deep learning methods for parotid gland segmentation from CT images A Hänsch, M Schwier, T Gass, T Morgas, B Haas, V Dicken, H Meine, ... Journal of Medical Imaging 6 (1), 011005, 2018 | 8 | 2018 |
A new sub-pixel map for image analysis H Meine, U Köthe International Workshop on Combinatorial Image Analysis, 116-130, 2006 | 8 | 2006 |
New opportunities for the microstructural analysis of wood fiber networks T Walther, H Thoemen, K Terzic, H Meine Proceedings of the tenth European panel products symposium, Llandudno, Wales …, 2006 | 8 | 2006 |