Kevin Ryczko
Kevin Ryczko
Verified email at uottawa.ca - Homepage
Title
Cited by
Cited by
Year
Deep learning and density-functional theory
K Ryczko, DA Strubbe, I Tamblyn
Physical Review A 100 (2), 022512, 2019
372019
Convolutional neural networks for atomistic systems
K Ryczko, K Mills, I Luchak, C Homenick, I Tamblyn
Computational Materials Science 149, 134-142, 2018
372018
Self-learning projective quantum Monte Carlo simulations guided by restricted Boltzmann machines
S Pilati, EM Inack, P Pieri
Physical Review E 100 (4), 043301, 2019
192019
Extensive deep neural networks for transferring small scale learning to large scale systems
K Mills, K Ryczko, I Luchak, A Domurad, C Beeler, I Tamblyn
Chemical science 10 (15), 4129-4140, 2019
172019
Hashkat: large-scale simulations of online social networks
K Ryczko, A Domurad, N Buhagiar, I Tamblyn
Social Network Analysis and Mining 7 (1), 4, 2017
92017
Crystal site feature embedding enables exploration of large chemical spaces
H Choubisa, M Askerka, K Ryczko, O Voznyy, K Mills, I Tamblyn, ...
Matter 3 (2), 433-448, 2020
52020
Structural characterization of water-metal interfaces
K Ryczko, I Tamblyn
Physical Review B 96 (6), 064104, 2017
42017
Inverse Design of a Graphene-Based Quantum Transducer via Neuroevolution
K Ryczko, P Darancet, I Tamblyn
The Journal of Physical Chemistry C 124 (48), 26117-26123, 2020
22020
Neural evolution structure generation: High Entropy Alloys
CGT Feugmo, K Ryczko, A Anand, CV Singh, I Tamblyn
arXiv preprint arXiv:2103.01462, 2021
2021
Twin Neural Network Regression
SJ Wetzel, K Ryczko, RG Melko, I Tamblyn
arXiv preprint arXiv:2012.14873, 2020
2020
Learning density functional theory mappings with extensive deep neural networks and deep convolutional inverse graphics networks
K Ryczko, D Strubbe, I Tamblyn
APS March Meeting Abstracts 2019, C18. 013, 2019
2019
Extensive deep neural networks for 2d materials
I Luchak, K Mills, K Ryczko, A Domurad, C Beeler, I Tamblyn
APS March Meeting Abstracts 2018, R12. 001, 2018
2018
Structural characterizations of water-metal interfaces with large-scale first principles molecular dynamics
K Ryczko, I Tamblyn
APS March Meeting Abstracts 2017, K26. 002, 2017
2017
Effect of iron content on the catalytic activity of Fe-MnOx electrodeposited films in water oxidation
E Selinger, K Ryczko, G Lopinski, M Armandi, B Bonelli, I Tamblyn
APS March Meeting Abstracts 2017, Y25. 004, 2017
2017
Characterizing water-metal interfaces and machine learning potential energy surfaces
K Ryczko
University of Ontario Institute of Technology (Canada), 2017
2017
Electric ion dispersion as a new type of mass spectrometer
M Lindstrom, I Moyles, K Ryczko
Mathematics-in-Industry Case Studies 7 (1), 1-13, 2017
2017
MODELLING AN ONLINE SOCIAL NETWORK
K Ryczko
University of Ontario Institute of Technology, 2014
2014
Electric Ion Dispersion as a New Type of Mass Spectrometer
J Budd, M Lindstrom, I Moyles, M Pugh, K Ryczko
2014
The system can't perform the operation now. Try again later.
Articles 1–18