The importance of skip connections in biomedical image segmentation M Drozdzal, E Vorontsov, G Chartrand, S Kadoury, C Pal Deep Learning and Data Labeling for Medical Applications, 179-187, 2016 | 847 | 2016 |
Deep Learning: A Primer for Radiologists G Chartrand, PM Cheng, E Vorontsov, M Drozdzal, S Turcotte, CJ Pal, ... RadioGraphics 37 (7), 2113-2131, 2017 | 613 | 2017 |
A large annotated medical image dataset for the development and evaluation of segmentation algorithms AL Simpson, M Antonelli, S Bakas, M Bilello, K Farahani, B van Ginneken, ... arXiv preprint arXiv:1902.09063, 2019 | 388 | 2019 |
The liver tumor segmentation benchmark (lits) P Bilic, PF Christ, E Vorontsov, G Chlebus, H Chen, Q Dou, CW Fu, X Han, ... arXiv preprint arXiv:1901.04056, 2019 | 383 | 2019 |
Learning normalized inputs for iterative estimation in medical image segmentation M Drozdzal, G Chartrand, E Vorontsov, M Shakeri, L Di Jorio, A Tang, ... Medical Image Analysis, 2017 | 214 | 2017 |
On orthogonality and learning recurrent networks with long term dependencies E Vorontsov, C Trabelsi, S Kadoury, C Pal Proceedings of the 34th International Conference on Machine Learning-Volume …, 2017 | 184 | 2017 |
Liver lesion segmentation informed by joint liver segmentation E Vorontsov, A Tang, C Pal, S Kadoury 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018 …, 2018 | 108 | 2018 |
Deep learning for automated segmentation of liver lesions at CT in patients with colorectal cancer liver metastases E Vorontsov, M Cerny, P Régnier, L Di Jorio, CJ Pal, R Lapointe, ... Radiology. Artificial intelligence 1 (2), 2019 | 63 | 2019 |
The Medical Segmentation Decathlon M Antonelli, A Reinke, S Bakas, K Farahani, BA Landman, G Litjens, ... arXiv preprint arXiv:2106.05735, 2021 | 54 | 2021 |
Dynamics and Distribution of Klothoβ (KLB) and Fibroblast Growth Factor Receptor-1 (FGFR1) in Living Cells Reveal the Fibroblast Growth Factor-21 (FGF21)-induced Receptor Complex AYK Ming, E Yoo, EN Vorontsov, SM Altamentova, DM Kilkenny, ... Journal of Biological Chemistry 287 (24), 19997-20006, 2012 | 46 | 2012 |
Non-normal Recurrent Neural Network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics G Kerg, K Goyette, MP Touzel, G Gidel, E Vorontsov, Y Bengio, G Lajoie Advances in Neural Information Processing Systems, 13613-13623, 2019 | 42 | 2019 |
Towards non-saturating recurrent units for modelling long-term dependencies S Chandar, C Sankar, E Vorontsov, SE Kahou, Y Bengio Proceedings of the AAAI Conference on Artificial Intelligence 33 (01), 3280-3287, 2019 | 39 | 2019 |
Metastatic liver tumor segmentation using texture-based omni-directional deformable surface models E Vorontsov, N Abi-Jaoudeh, S Kadoury International MICCAI Workshop on Computational and Clinical Challenges in …, 2014 | 35 | 2014 |
Metastatic liver tumour segmentation from discriminant Grassmannian manifolds S Kadoury, E Vorontsov, A Tang Physics in Medicine & Biology 60 (16), 6459, 2015 | 26 | 2015 |
Metastatic liver tumour segmentation with a neural network-guided 3D deformable model E Vorontsov, A Tang, D Roy, CJ Pal, S Kadoury Medical & biological engineering & computing, 1-13, 2016 | 24 | 2016 |
Towards semi-supervised segmentation via image-to-image translation E Vorontsov, P Molchanov, C Beckham, W Byeon, S De Mello, V Jampani, ... arXiv preprint arXiv:1904.01636, 2019 | 15* | 2019 |
Label noise in segmentation networks: mitigation must deal with bias E Vorontsov, S Kadoury Deep Generative Models, and Data Augmentation, Labelling, and Imperfections …, 2021 | 4 | 2021 |
Managing Class Imbalance in Multi-Organ CT Segmentation in Head and Neck Cancer Patients S Cros, E Vorontsov, S Kadoury 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), 1360-1364, 2021 | 1 | 2021 |
Prediction of CD3 T-cell infiltration status in colorectal liver metastases: a radiomics-based imaging biomarker R Saber, D Henault, E Vorontsov, E Montagnon, A Tang, S Turcotte, ... Medical Imaging 2022: Computer-Aided Diagnosis 12033, 415-421, 2022 | | 2022 |
Cross-institutional outcome prediction for head and neck cancer patients using self-attention neural networks WT Le, E Vorontsov, FP Romero, L Seddik, MM Elsharief, PF Nguyen-Tan, ... Scientific Reports 12 (1), 1-17, 2022 | | 2022 |