Firmly nonexpansive mappings in classes of geodesic spaces D Ariza-Ruiz, L Leuştean, G López-Acedo Transactions of the American Mathematical Society 366 (8), 4299-4322, 2014 | 127 | 2014 |
The asymptotic behavior of the composition of firmly nonexpansive mappings D Ariza-Ruiz, G López-Acedo, A Nicolae Journal of Optimization Theory and Applications 167, 409-429, 2015 | 46 | 2015 |
On α-nonexpansive mappings in Banach spaces D Ariza-Ruiz, CH Linares, E Llorens-Fuster, E Moreno-Gálvez Carpathian Journal of Mathematics, 13-28, 2016 | 22 | 2016 |
A continuation method for weakly Kannan maps D Ariza-Ruiz, A Jimenez-Melado Fixed point theory and applications 2010 (1), 1-12, 2010 | 20 | 2010 |
Firmly nonexpansive mappings D Ariza-Ruiz, G Lopez-Acedo, V Martin-Marquez J. Nonlinear Convex Anal 15 (1), 61-87, 2014 | 18 | 2014 |
The Schauder fixed point theorem in geodesic spaces D Ariza-Ruiz, C Li, G López-Acedo Journal of Mathematical Analysis and Applications 417 (1), 345-360, 2014 | 16 | 2014 |
A fixed point theorem for weakly Zamfirescu mappings D Ariza-Ruiz, A Jiménez-Melado, G López-Acedo Nonlinear Analysis: Theory, Methods & Applications 74 (5), 1628-1640, 2011 | 14 | 2011 |
Convergence and stability of some iterative processes for a class of quasinonexpansive type mappings D Ariza-Ruiz J. Nonlinear Sci. Appl 5, 93-103, 2012 | 13 | 2012 |
Chebyshev sets in geodesic spaces D Ariza-Ruiz, A Fernández-León, G López-Acedo, A Nicolae Journal of Approximation Theory 207, 265-282, 2016 | 10 | 2016 |
Iterative approximation to a coincidence point of two mappings D Ariza-Ruiz, J Garcia-Falset Applied Mathematics and Computation 259, 762-776, 2015 | 4 | 2015 |
A continuation method for weakly contractive mappings under the interior condition D Ariza-Ruiz, A Jimenez-Melado Fixed Point Theory and Applications 2009 (1), 1-8, 2009 | 4 | 2009 |
Abstract measures of noncompactness and fixed points for nonlinear mappings D Ariza-Ruiz, J Carcia-Falset Fixed Point Theory 21 (1), 47-65, 2020 | 3 | 2020 |
Existence and uniqueness of solution to several kinds of differential equations using the coincidence theory D Ariza-Ruiz, J Garcia-Falset | 3 | 2015 |
Rate of convergence under weak contractiveness conditions D Ariza Ruiz, EM Briseid, A Jiménez Melado, G López Acedo Fixed Point Theory, 14 (1), 11-28., 2013 | 3 | 2013 |
An existence principle for variational inequalities in Banach spaces D Ariza-Ruiz, J Garcia-Falset, J Villada-Bedoya Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie …, 2020 | 2 | 2020 |
The Bolzano–Poincaré–Miranda theorem in infinite-dimensional Banach spaces D Ariza-Ruiz, J Garcia-Falset, S Reich Journal of Fixed Point Theory and Applications 21, 1-12, 2019 | 2 | 2019 |
An existence and uniqueness principle for a nonlinear version of the Lebowitz‐Rubinow model with infinite maximum cycle length D Ariza‐Ruiz, J Garcia‐Falset, K Latrach Mathematical Methods in the Applied Sciences 41 (1), 407-422, 2018 | 1 | 2018 |
An exhaustive study of some contractive type conditions D Ariza-Ruiz JOURNAL OF NONLINEAR AND CONVEX ANALYSIS 17 (10), 2013-2027, 2016 | 1 | 2016 |
Existence and uniqueness to several kinds of differential equations using the Coincidence Theory D Ariza-Ruiz, J Garcia-Falset arXiv preprint arXiv:1403.4843, 2014 | 1 | 2014 |
Periodic Solutions to Second-Order Nonlinear Differential Equations in Banach Spaces D Ariza-Ruiz, J Garcia-Falset Mediterranean Journal of Mathematics 19 (2), 51, 2022 | | 2022 |