Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics L Bronsard, RV Kohn Journal of differential equations 90 (2), 211-237, 1991 | 352 | 1991 |
On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation L Bronsard, F Reitich Archive for Rational Mechanics and Analysis 124, 355-379, 1993 | 300 | 1993 |
On the slowness of phase boundary motion in one space dimension L Bronsard, RV Kohn Comm. Pure Appl. Math. 43 (8), 983–997, 1990 | 178 | 1990 |
Stationary layered solutions in for an Allen–Cahn system with multiple well potential S Alama, L Bronsard, C Gui Calculus of Variations and Partial Differential Equations 5 (4), 359-390, 1997 | 131 | 1997 |
Volume-preserving mean curvature flow as a limit of a nonlocal Ginzburg-Landau equation L Bronsard, B Stoth SIAM Journal on Mathematical Analysis 28 (4), 769-807, 1997 | 125 | 1997 |
A three‐layered minimizer in R2 for a variational problem with a symmetric three‐well potential L Bronsard, C Gui, M Schatzman Communications on pure and applied mathematics 49 (7), 677-715, 1996 | 104 | 1996 |
Giant vortex and the breakdown of strong pinning in a rotating Bose-Einstein condensate A Aftalion, S Alama, L Bronsard Archive for rational mechanics and analysis 178, 247-286, 2005 | 90 | 2005 |
On the slow dynamics for the Cahn–Hilliard equation in one space dimension L Bronsard, D Hilhorst Proceedings of the Royal Society of London. Series A: Mathematical and …, 1992 | 80 | 1992 |
A numerical method for tracking curve networks moving with curvature motion L Bronsard, BTR Wetton Journal of Computational Physics 120 (1), 66-87, 1995 | 76 | 1995 |
A multi-phase Mullins–Sekerka system: matched asymptotic expansions and an implicit time discretisation for the geometric evolution problem L Bronsard, H Garcke, B Stoth Proceedings of the Royal Society of Edinburgh Section A: Mathematics 128 (3 …, 1998 | 64 | 1998 |
Slow motion in the gradient theory of phase transitions via energy and spectrum ND Alikakos, L Bronsard, G Fusco Calculus of Variations and Partial Differential Equations 6 (1), 39-66, 1997 | 53 | 1997 |
Front propagation for reaction-diffusion equations of bistable type G Barles, L Bronsard, PE Souganidis Annales de l'Institut Henri Poincaré C, Analyse non linéaire 9 (5), 479-496, 1992 | 46 | 1992 |
Minimizers of the Landau–de Gennes energy around a spherical colloid particle S Alama, L Bronsard, X Lamy Archive for Rational Mechanics and Analysis 222, 427-450, 2016 | 45 | 2016 |
On the existence of high multiplicity interfaces L Bronsard, B Stoth Mathematical Research Letters 3 (1), 41-50, 1996 | 42 | 1996 |
Pinning effects and their breakdown for a Ginzburg–Landau model with normal inclusions S Alama, L Bronsard Journal of mathematical physics 46 (9), 2005 | 36 | 2005 |
Domain walls in the coupled Gross–Pitaevskii equations S Alama, L Bronsard, A Contreras, DE Pelinovsky Archive for Rational Mechanics and Analysis 215, 579-610, 2015 | 35 | 2015 |
Vortices and pinning effects for the Ginzburg‐Landau model in multiply connected domains S Alama, L Bronsard Communications on Pure and Applied Mathematics: A Journal Issued by the …, 2006 | 35 | 2006 |
Analytical description of the saturn-ring defect in nematic colloids S Alama, L Bronsard, X Lamy Physical Review E 93 (1), 012705, 2016 | 33 | 2016 |
On the Ginzburg-Landau model of a superconducting ball in a uniform field S Alama, L Bronsard, JA Montero Annales de l'IHP Analyse non linéaire 23 (2), 237-267, 2006 | 30 | 2006 |
Vortices with antiferromagnetic cores in the SO (5) model of high-temperature superconductivity S Alama, AJ Berlinsky, L Bronsard, T Giorgi Physical Review B 60 (9), 6901, 1999 | 27 | 1999 |