Strongly convex functions, Moreau envelopes, and the generic nature of convex functions with strong minimizers C Planiden, X Wang SIAM Journal on Optimization 26 (2), 1341-1364, 2016 | 33 | 2016 |

Error bounds for overdetermined and underdetermined generalized centred simplex gradients W Hare, G Jarry–Bolduc, C Planiden IMA Journal of Numerical Analysis 42 (1), 744-770, 2022 | 21 | 2022 |

A proposed hedge-based energy market model to manage renewable intermittency C Johnathon, AP Agalgaonkar, C Planiden, J Kennedy Renewable Energy 207, 376-384, 2023 | 16 | 2023 |

A derivative-free 𝒱𝒰-algorithm for convex finite-max problems W Hare, C Planiden, C Sagastizábal Optimization Methods and Software 35 (3), 521-559, 2020 | 16 | 2020 |

Proximal mappings and Moreau envelopes of single-variable convex piecewise cubic functions and multivariable gauge functions C Planiden, X Wang Nonsmooth optimization and its applications, 89-130, 2019 | 12 | 2019 |

Analyzing electricity markets with increasing penetration of large-scale renewable power generation C Johnathon, AP Agalgaonkar, J Kennedy, C Planiden Energies 14 (22), 7618, 2021 | 11 | 2021 |

Most convex functions have unique minimizers C Planiden, X Wang arXiv preprint arXiv:1410.1078, 2014 | 10 | 2014 |

A proximal average for prox-bounded functions J Chen, X Wang, C Planiden SIAM Journal on Optimization 30 (2), 1366-1390, 2020 | 8 | 2020 |

Computing proximal points of convex functions with inexact subgradients W Hare, C Planiden Set-Valued and Variational Analysis 26, 469-492, 2018 | 8 | 2018 |

Parametrically prox-regular functions W Hare, C Planiden arXiv preprint arXiv:1909.06909, 2019 | 6 | 2019 |

The NC-proximal average for multiple functions W Hare, C Planiden Optimization Letters 8, 849-860, 2014 | 6 | 2014 |

A matrix algebra approach to approximate Hessians W Hare, G Jarry-Bolduc, C Planiden arXiv preprint arXiv:2304.03222, 2023 | 4 | 2023 |

Hessian approximations W Hare, G Jarry-Bolduc, C Planiden arXiv preprint arXiv:2011.02584, 2020 | 4 | 2020 |

Epi-convergence: the Moreau envelope and generalized linear-quadratic functions C Planiden, X Wang Journal of Optimization Theory and Applications 177, 21-63, 2018 | 4 | 2018 |

Nicely structured positive bases with maximal cosine measure W Hare, G Jarry-Bolduc, C Planiden Optimization Letters 17 (7), 1495-1515, 2023 | 3 | 2023 |

Thresholds of prox-boundedness of PLQ functions W Hare, C Planiden arXiv preprint arXiv:1611.00996, 2016 | 3 | 2016 |

Limiting Behaviour of the Generalized Simplex Gradient as the Number of Points Tends to Infinity on a Fixed Shape in IR^{n}W Hare, G Jarry-Bolduc, C Planiden Set-Valued and Variational Analysis 31 (1), 1, 2023 | 2 | 2023 |

The chain rule for VU-decompositions of nonsmooth functions W Hare, C Planiden, C Sagastizabal arXiv preprint arXiv:1909.04799, 2019 | 2 | 2019 |

Theory and algorithmic applications of the proximal mapping and Moreau envelope CD Planiden University of British Columbia, 2018 | 1 | 2018 |

Linear Convergence of the Derivative-Free Proximal Bundle Method on Convex Nonsmooth Functions, with Application to the Derivative-Free -Algorithm C Planiden, T Rajapaksha Set-Valued and Variational Analysis 32 (2), 15, 2024 | | 2024 |