Follow
Vasek Chvatal
Vasek Chvatal
Concordia, Rutgers, McGill, Stanford, Montreal, Waterloo
Verified email at cse.concordia.ca
Title
Cited by
Cited by
Year
Linear programming
V Chvátal
Macmillan, 1983
42701983
A greedy heuristic for the set-covering problem
V Chvatal
Mathematics of operations research 4 (3), 233-235, 1979
34541979
A combinatorial theorem in plane geometry
V Chvátal
Journal of Combinatorial Theory, Series B 18 (1), 39-41, 1975
8881975
Edmonds polytopes and a hierarchy of combinatorial problems
V Chvátal
Discrete mathematics 4 (4), 305-337, 1973
8321973
Tough graphs and Hamiltonian circuits
V Chvátal
Discrete Mathematics 5 (3), 215-228, 1973
8141973
On certain polytopes associated with graphs
V Chvátal
Journal of Combinatorial Theory, Series B 18 (2), 138-154, 1975
8111975
A method in graph theory
JA Bondy, V Chvátal
Discrete Mathematics 15 (2), 111-135, 1976
6381976
Aggregations of inequalities
V Chvátal, PL Hammer
Studies in Integer Programming, Annals of Discrete Mathematics 1, 145-162, 1977
6231977
On the solution of traveling salesman problems
D Applegate, R Bixby, W Cook, V Chvátal
Rheinische Friedrich-Wilhelms-Universität Bonn, 1998
6131998
Many hard examples for resolution
V Chvátal, E Szemerédi
Journal of the ACM (JACM) 35 (4), 759-768, 1988
6111988
A note on Hamiltonian circuits.
V Chvátal, P Erdös
Discret. Math. 2 (2), 111-113, 1972
6021972
Crossing-free subgraphs
M Ajtai, V Chvátal, MM Newborn, E Szemerédi
North-Holland Mathematics Studies 60, 9-12, 1982
4981982
Mick gets some (the odds are on his side)(satisfiability)
V Chvátal, B Reed
Proceedings., 33rd Annual Symposium on Foundations of Computer Science, 620-627, 1992
4731992
On Hamilton's ideals
V Chvátal
Journal of Combinatorial Theory, Series B 12 (2), 163-168, 1972
4371972
Concorde TSP solver
D Applegate, R Bixby, V Chvatal, W Cook
4182006
Longest common subsequences of two random sequences
V Chvatal, D Sankoff
Journal of Applied Probability 12 (2), 306-315, 1975
3351975
The tail of the hypergeometric distribution
V Chvátal
Discrete Mathematics 25 (3), 285-287, 1979
2961979
Trivially, the Grundy number of an ordered graph is at least its chromatic number; to see that the inequality may be strict, consider the graph with vertices a, b, c, d, edges …
V Chvátal
Topics on perfect graphs 21, 63-65, 1984
2771984
Star-cutsets and perfect graphs
V Chvátal
Journal of Combinatorial Theory, Series B 39 (3), 189-199, 1985
2741985
Mastermind
V Chvátal
Combinatorica 3, 325-329, 1983
2611983
The system can't perform the operation now. Try again later.
Articles 1–20