A triphasic model of transversely isotropic biological tissue with applications to stress and biologically induced growth T Ricken, A Schwarz, J Bluhm Computational materials science 39 (1), 124-136, 2007 | 44 | 2007 |

A finite element method for contact using a third medium P Wriggers, J Schröder, A Schwarz Computational Mechanics 52 (4), 837-847, 2013 | 38 | 2013 |

A modified least‐squares mixed finite element with improved momentum balance A Schwarz, J Schröder, G Starke International journal for numerical methods in engineering 81 (3), 286-306, 2010 | 36 | 2010 |

Least‐squares mixed finite elements for small strain elasto‐viscoplasticity A Schwarz, J Schröder, G Starke International journal for numerical methods in engineering 77 (10), 1351-1370, 2009 | 29 | 2009 |

A first-order system least squares method for hyperelasticity B Müller, G Starke, A Schwarz, J Schröder SIAM Journal on Scientific Computing 36 (5), B795-B816, 2014 | 19 | 2014 |

Analysis of a modified first-order system least squares method for linear elasticity with improved momentum balance G Starke, A Schwarz, J Schröder SIAM journal on numerical analysis 49 (3), 1006-1022, 2011 | 16 | 2011 |

Weighted overconstrained least-squares mixed finite elements for static and dynamic problems in quasi-incompressible elasticity A Schwarz, K Steeger, J Schröder Computational Mechanics 54 (3), 603-612, 2014 | 14 | 2014 |

Efficient stress–velocity least-squares finite element formulations for the incompressible Navier–Stokes equations C Nisters, A Schwarz Computer Methods in Applied Mechanics and Engineering 341, 333-359, 2018 | 10 | 2018 |

Least-squares mixed finite element formulations for isotropic and anisotropic elasticity at small and large strains J Schröder, A Schwarz, K Steeger Advanced Finite Element Technologies, 131-175, 2016 | 10 | 2016 |

A Prange–Hellinger–Reissner type finite element formulation for small strain elasto-plasticity J Schröder, M Igelbüscher, A Schwarz, G Starke Computer Methods in Applied Mechanics and Engineering 317, 400-418, 2017 | 8 | 2017 |

Performance aspects of a mixed s‐v LSFEM for the incompressible Navier‐Stokes equations with improved mass conservation A Schwarz, J Schröder, S Serdas, S Turek, A Ouazzi, M Nickaeen PAMM 13 (1), 513-514, 2013 | 8 | 2013 |

Least-squared Mixed Finite Elements for Solid Mechanics A Schwarz Universität Duisburg-Essen, 2009 | 8 | 2009 |

A comparative study of mixed least-squares FEMs for the incompressible Navier-Stokes equations A Schwarz, M Nickaeen, S Serdas, C Nisters, A Ouazzi, J Schröder, ... International Journal of Computational Science and Engineering 17 (1), 80-97, 2018 | 6 | 2018 |

Different approaches for mixed LSFEMs in hyperelasticity: Application of logarithmic deformation measures A Schwarz, K Steeger, M Igelbüscher, J Schröder International Journal for Numerical Methods in Engineering 115 (9), 1138-1153, 2018 | 5 | 2018 |

A stress‐velocity least‐squares mixed finite element formulation for incompressible elastodynamics C Nisters, A Schwarz, K Steeger, J Schröder PAMM 15 (1), 217-218, 2015 | 5 | 2015 |

Least-squares mixed finite elements for hyperelastic material models A Schwarz, J Schröder, G Starke, K Steeger Report of the Workshop 1207, 470-472, 2012 | 5 | 2012 |

Stress-displacement least squares mixed finite element approximation for hyperelastic materials G Starke, B Müller, A Schwarz, J Schröder Report of the Workshop 1207, 467-469, 2012 | 5 | 2012 |

A mixed least‐squares formulation of the Navier‐Stokes equations for incompressible Newtonian fluid flow A Schwarz, J Schröder PAMM 11 (1), 589-590, 2011 | 5 | 2011 |

A triphasic theory for growth in biological tissue–basics and applications T Ricken, A Schwarz, J Bluhm Materialwissenschaft und Werkstofftechnik: Entwicklung, Fertigung, Prüfung …, 2006 | 5 | 2006 |

Internat. J. Numer. Methods Engrg. 81, 286‐306 (2010). A Schwarz, J Schröder, G Starke | 5 | |