Categorical structures enriched in a quantaloid: categories, distributors and functors I Stubbe arXiv preprint math/0409473, 2004 | 136* | 2004 |

Categorical structures enriched in a quantaloid: tensored and cotensored categories I Stubbe arXiv preprint math/0411366, 2004 | 98 | 2004 |

Quantaloids describing causation and propagation of physical properties B Coecke, DJ Moore, I Stubbe Foundations of Physics Letters 14 (2), 133-145, 2001 | 46 | 2001 |

An introduction to quantaloid-enriched categories I Stubbe Fuzzy Sets and Systems 256, 95-116, 2014 | 44 | 2014 |

How quantales emerge by introducing induction within the operational approach H Amira, B Coecke, I Stubbe Helvetica Physica Acta 71 (5), 554-572, 1998 | 39 | 1998 |

Towards “dynamic domains”: totally continuous cocomplete Q-categories I Stubbe Theoretical Computer Science 373 (1-2), 142-160, 2007 | 34 | 2007 |

Propositional systems, Hilbert lattices and generalized Hilbert spaces I Stubbe, B Van Steirteghem Handbook of quantum logic and quantum structures, 477-523, 2007 | 30 | 2007 |

On a duality of quantales emerging from an operational resolution B Coecke, I Stubbe International Journal of Theoretical Physics 38 (12), 3269-3281, 1999 | 28 | 1999 |

Operational resolutions and state transitions in a categorical setting B Coecke, I Stubbe Foundations of Physics Letters 12 (1), 29-49, 1999 | 28 | 1999 |

Short introduction to enriched categories F Borceux, I Stubbe Current research in operational quantum logic, 167-194, 2000 | 26 | 2000 |

Categorical structures enriched in a quantaloid: categories and semicategories I Stubbe PhD Thesis, 2003 | 16 | 2003 |

Symmetry and Cauchy completion of quantaloid-enriched categories H Heymans, I Stubbe arXiv preprint arXiv:1005.1018, 2010 | 15 | 2010 |

Q-modules are Q-suplattices I Stubbe arXiv preprint arXiv:0809.4343, 2008 | 15 | 2008 |

" Hausdorff distance" via conical cocompletion I Stubbe Cahiers de topologie et géométrie différentielle catégoriques 51 (1), 51-76, 2010 | 14 | 2010 |

The double power monad is the composite power monad I Stubbe Fuzzy Sets and Systems 313, 25-42, 2017 | 13* | 2017 |

Categorical structures enriched in a quantaloid: regular presheaves, regular semicategories I Stubbe Cahiers de topologie et géométrie différentielle catégoriques 46 (2), 99-121, 2005 | 13 | 2005 |

Towards Stone duality for topological theories D Hofmann, I Stubbe Topology and its Applications 158 (7), 913-925, 2011 | 11 | 2011 |

The canonical topology on a meet-semilattice I Stubbe International Journal of Theoretical Physics 44 (12), 2283-2293, 2005 | 10 | 2005 |

Exponentiable functors between quantaloid-enriched categories MM Clementino, D Hofmann, I Stubbe Applied categorical structures 17 (1), 91-101, 2009 | 9 | 2009 |

Topology from enrichment: the curious case of partial metrics D Hofmann, I Stubbe arXiv preprint arXiv:1607.02269, 2016 | 8 | 2016 |