A user’s guide to PDE models for chemotaxis T Hillen, KJ Painter Journal of mathematical biology 58 (1), 183-217, 2009 | 1729 | 2009 |

Volume-filling and quorum-sensing in models for chemosensitive movement KJ Painter, T Hillen Can. Appl. Math. Quart 10 (4), 501-543, 2002 | 679 | 2002 |

The diffusion limit of transport equations derived from velocity-jump processes HG Othmer, T Hillen SIAM Journal on Applied Mathematics 61 (3), 751-775, 2000 | 470 | 2000 |

The diffusion limit of transport equations II: Chemotaxis equations HG Othmer, T Hillen SIAM Journal on Applied Mathematics 62 (4), 1222-1250, 2002 | 439 | 2002 |

Global existence for a parabolic chemotaxis model with prevention of overcrowding T Hillen, K Painter Advances in Applied Mathematics 26 (4), 280-301, 2001 | 370 | 2001 |

A course in mathematical biology: quantitative modeling with mathematical and computational methods G De Vries, T Hillen, M Lewis, J Müller, B Schönfisch Society for Industrial and Applied Mathematics, 2006 | 252 | 2006 |

Spatio-temporal chaos in a chemotaxis model KJ Painter, T Hillen Physica D: Nonlinear Phenomena 240 (4-5), 363-375, 2011 | 218 | 2011 |

Pattern formation in prey-taxis systems JM Lee, T Hillen, MA Lewis Journal of biological dynamics 3 (6), 551-573, 2009 | 178 | 2009 |

Mathematical modelling of glioma growth: the use of diffusion tensor imaging (DTI) data to predict the anisotropic pathways of cancer invasion KJ Painter, T Hillen Journal of theoretical biology 323, 25-39, 2013 | 176 | 2013 |

M5 mesoscopic and macroscopic models for mesenchymal motion T Hillen Journal of mathematical biology 53 (4), 585-616, 2006 | 150 | 2006 |

Hyperbolic models for chemosensitive movement T Hillen Mathematical Models and Methods in Applied Sciences 12 (07), 1007-1034, 2002 | 143 | 2002 |

Classical solutions and pattern formation for a volume filling chemotaxis model Z Wang, T Hillen Chaos: An Interdisciplinary Journal of Nonlinear Science 17 (3), 2007 | 135 | 2007 |

Linear quadratic and tumour control probability modelling in external beam radiotherapy SFC O’Rourke, H McAneney, T Hillen Journal of mathematical biology 58, 799-817, 2009 | 132 | 2009 |

Convergence of a cancer invasion model to a logistic chemotaxis model T Hillen, KJ Painter, M Winkler Mathematical Models and Methods in Applied Sciences 23 (01), 165-198, 2013 | 130 | 2013 |

Glioma follow white matter tracts: a multiscale DTI-based model C Engwer, T Hillen, M Knappitsch, C Surulescu Journal of mathematical biology 71, 551-582, 2015 | 128 | 2015 |

The tumor growth paradox and immune system-mediated selection for cancer stem cells T Hillen, H Enderling, P Hahnfeldt Bulletin of mathematical biology 75, 161-184, 2013 | 123 | 2013 |

The one‐dimensional chemotaxis model: global existence and asymptotic profile T Hillen, A Potapov Mathematical methods in the applied sciences 27 (15), 1783-1801, 2004 | 115 | 2004 |

Global existence for chemotaxis with finite sampling radius T Hillen, K Painter, C Schmeiser Discrete and Continuous Dynamical Systems Series B 7 (1), 125, 2007 | 113 | 2007 |

Hyperbolic models for chemotaxis in 1-D T Hillen, A Stevens Nonlinear Analysis: Real World Applications 1 (3), 409-433, 2000 | 105 | 2000 |

Modeling cell movement in anisotropic and heterogeneous network tissues A Chauviere, T Hillen, L Preziosi Networks and heterogeneous media 2 (2), 333-357, 2007 | 91 | 2007 |