A user’s guide to PDE models for chemotaxis T Hillen, KJ Painter Journal of mathematical biology 58 (1), 183-217, 2009 | 1811 | 2009 |
Volume-filling and quorum-sensing in models for chemosensitive movement KJ Painter, T Hillen Can. Appl. Math. Quart 10 (4), 501-543, 2002 | 709 | 2002 |
The diffusion limit of transport equations derived from velocity-jump processes HG Othmer, T Hillen SIAM Journal on Applied Mathematics 61 (3), 751-775, 2000 | 486 | 2000 |
The diffusion limit of transport equations II: Chemotaxis equations HG Othmer, T Hillen SIAM Journal on Applied Mathematics 62 (4), 1222-1250, 2002 | 451 | 2002 |
Global existence for a parabolic chemotaxis model with prevention of overcrowding T Hillen, K Painter Advances in Applied Mathematics 26 (4), 280-301, 2001 | 385 | 2001 |
A course in mathematical biology: quantitative modeling with mathematical and computational methods G De Vries, T Hillen, M Lewis, J Müller, B Schönfisch Society for Industrial and Applied Mathematics, 2006 | 259 | 2006 |
Spatio-temporal chaos in a chemotaxis model KJ Painter, T Hillen Physica D: Nonlinear Phenomena 240 (4-5), 363-375, 2011 | 229 | 2011 |
Pattern formation in prey-taxis systems JM Lee, T Hillen, MA Lewis Journal of biological dynamics 3 (6), 551-573, 2009 | 191 | 2009 |
Mathematical modelling of glioma growth: the use of diffusion tensor imaging (DTI) data to predict the anisotropic pathways of cancer invasion KJ Painter, T Hillen Journal of theoretical biology 323, 25-39, 2013 | 185 | 2013 |
M5 mesoscopic and macroscopic models for mesenchymal motion T Hillen Journal of mathematical biology 53 (4), 585-616, 2006 | 159 | 2006 |
Hyperbolic models for chemosensitive movement T Hillen Mathematical Models and Methods in Applied Sciences 12 (07), 1007-1034, 2002 | 146 | 2002 |
Linear quadratic and tumour control probability modelling in external beam radiotherapy SFC O’Rourke, H McAneney, T Hillen Journal of mathematical biology 58, 799-817, 2009 | 141 | 2009 |
Classical solutions and pattern formation for a volume filling chemotaxis model Z Wang, T Hillen Chaos: An Interdisciplinary Journal of Nonlinear Science 17 (3), 2007 | 140 | 2007 |
Convergence of a cancer invasion model to a logistic chemotaxis model T Hillen, KJ Painter, M Winkler Mathematical Models and Methods in Applied Sciences 23 (01), 165-198, 2013 | 139 | 2013 |
Glioma follow white matter tracts: a multiscale DTI-based model C Engwer, T Hillen, M Knappitsch, C Surulescu Journal of mathematical biology 71, 551-582, 2015 | 138 | 2015 |
The tumor growth paradox and immune system-mediated selection for cancer stem cells T Hillen, H Enderling, P Hahnfeldt Bulletin of mathematical biology 75, 161-184, 2013 | 124 | 2013 |
The one‐dimensional chemotaxis model: global existence and asymptotic profile T Hillen, A Potapov Mathematical methods in the applied sciences 27 (15), 1783-1801, 2004 | 119 | 2004 |
Global existence for chemotaxis with finite sampling radius T Hillen, K Painter, C Schmeiser Discrete and Continuous Dynamical Systems Series B 7 (1), 125, 2007 | 114 | 2007 |
Hyperbolic models for chemotaxis in 1-D T Hillen, A Stevens Nonlinear Analysis: Real World Applications 1 (3), 409-433, 2000 | 110 | 2000 |
Modeling cell movement in anisotropic and heterogeneous network tissues A Chauviere, T Hillen, L Preziosi Networks and heterogeneous media 2 (2), 333-357, 2007 | 95 | 2007 |