A user’s guide to PDE models for chemotaxis T Hillen, KJ Painter Journal of mathematical biology 58 (1-2), 183, 2009 | 1028 | 2009 |

Volume-filling and quorum-sensing in models for chemosensitive movement KJ Painter, T Hillen Can. Appl. Math. Quart 10 (4), 501-543, 2002 | 468 | 2002 |

The diffusion limit of transport equations derived from velocity-jump processes HG Othmer, T Hillen SIAM Journal on Applied Mathematics 61 (3), 751-775, 2000 | 379 | 2000 |

The diffusion limit of transport equations II: Chemotaxis equations HG Othmer, T Hillen SIAM Journal on Applied Mathematics 62 (4), 1222-1250, 2002 | 339 | 2002 |

Global existence for a parabolic chemotaxis model with prevention of overcrowding T Hillen, K Painter Advances in Applied Mathematics 26 (4), 280-301, 2001 | 289 | 2001 |

A course in mathematical biology: quantitative modeling with mathematical and computational methods G De Vries, T Hillen, M Lewis, J Müller, B Schönfisch Society for Industrial and Applied Mathematics, 2006 | 164 | 2006 |

Spatio-temporal chaos in a chemotaxis model KJ Painter, T Hillen Physica D: Nonlinear Phenomena 240 (4-5), 363-375, 2011 | 139 | 2011 |

M^{5} mesoscopic and macroscopic models for mesenchymal motionT Hillen Journal of mathematical biology 53 (4), 585-616, 2006 | 112 | 2006 |

Hyperbolic models for chemosensitive movement T Hillen Mathematical Models and Methods in Applied Sciences 12 (07), 1007-1034, 2002 | 109 | 2002 |

Mathematical modelling of glioma growth: the use of diffusion tensor imaging (DTI) data to predict the anisotropic pathways of cancer invasion KJ Painter, T Hillen Journal of theoretical biology 323, 25-39, 2013 | 96 | 2013 |

Hyperbolic models for chemotaxis in 1-D T Hillen, A Stevens Nonlinear Analysis: Real World Applications 3 (1), 409-433, 2000 | 96 | 2000 |

Classical solutions and pattern formation for a volume filling chemotaxis model Z Wang, T Hillen Chaos: An Interdisciplinary Journal of Nonlinear Science 17 (3), 037108, 2007 | 95 | 2007 |

Linear quadratic and tumour control probability modelling in external beam radiotherapy SFC O’Rourke, H McAneney, T Hillen Journal of mathematical biology 58 (4-5), 799, 2009 | 89 | 2009 |

The one‐dimensional chemotaxis model: global existence and asymptotic profile T Hillen, A Potapov Mathematical methods in the applied sciences 27 (15), 1783-1801, 2004 | 84 | 2004 |

Global existence for chemotaxis with finite sampling radius T Hillen, K Painter, C Schmeiser Discrete and Continuous Dynamical Systems Series B 7 (1), 125, 2007 | 81 | 2007 |

Convergence of a cancer invasion model to a logistic chemotaxis model T Hillen, KJ Painter, M Winkler Mathematical Models and Methods in Applied Sciences 23 (01), 165-198, 2013 | 76 | 2013 |

The tumor growth paradox and immune system-mediated selection for cancer stem cells T Hillen, H Enderling, P Hahnfeldt Bulletin of mathematical biology 75 (1), 161-184, 2013 | 76 | 2013 |

Metastability in chemotaxis models AB Potapov, T Hillen Journal of Dynamics and Differential Equations 17 (2), 293-330, 2005 | 72 | 2005 |

Modeling differential equations in biology CH Taubes Cambridge University Press, 2008 | 70 | 2008 |

Glioma follow white matter tracts: a multiscale DTI-based model C Engwer, T Hillen, M Knappitsch, C Surulescu Journal of mathematical biology 71 (3), 551-582, 2015 | 66 | 2015 |