Guillaume Verdon
Guillaume Verdon
Research Scientist - Sandbox@Alphabet
Verified email at - Homepage
Cited by
Cited by
Tensorflow quantum: A software framework for quantum machine learning
M Broughton, G Verdon, T McCourt, AJ Martinez, JH Yoo, SV Isakov, ...
arXiv preprint arXiv:2003.02989, 2020
Quantum Graph Neural Networks
G Verdon, T McCourt, E Luzhnica, V Singh, S Leichenauer, J Hidary
arXiv preprint arXiv:1909.12264, 2019
Learning to learn with quantum neural networks via classical neural networks
G Verdon, M Broughton, JR McClean, KJ Sung, R Babbush, Z Jiang, ...
arXiv preprint arXiv:1907.05415, 2019
A quantum algorithm to train neural networks using low-depth circuits
G Verdon, M Broughton, J Biamonte
arXiv preprint arXiv:1712.05304, 2017
A universal training algorithm for quantum deep learning
G Verdon, J Pye, M Broughton
arXiv preprint arXiv:1806.09729, 2018
Quantum hamiltonian-based models and the variational quantum thermalizer algorithm
G Verdon, J Marks, S Nanda, S Leichenauer, J Hidary
arXiv preprint arXiv:1910.02071, 2019
Asymptotically limitless quantum energy teleportation via qudit probes
G Verdon-Akzam, E Martin-Martinez, A Kempf
Phys. Rev. A 93 (2), 022308, 2016
A quantum approximate optimization algorithm for continuous problems
G Verdon, JM Arrazola, K Brádler, N Killoran
arXiv preprint arXiv:1902.00409, 2019
TensorFlow Quantum: A Software Framework for Quantum Machine Learning (2020)
M Broughton, G Verdon, T McCourt, A Martinez, J Yoo, SV Isakov, ...
arXiv preprint arXiv:1811.04968, 2003
Probing Quantum Fields: Measurements and Quantum Energy Teleportation
G Verdon-Akzam, 2017
A semi-agnostic ansatz with variable structure for quantum machine learning
M Bilkis, M Cerezo, G Verdon, PJ Coles, L Cincio
arXiv preprint arXiv:2103.06712, 2021
From Long-distance Entanglement to Building a Nationwide Quantum Internet: Report of the DOE Quantum Internet Blueprint Workshop
K Kleese van Dam
Brookhaven National Lab.(BNL), Upton, NY (United States), 2020
The system can't perform the operation now. Try again later.
Articles 1–12