Chainer: a next-generation open source framework for deep learning S Tokui, K Oono, S Hido, J Clayton Proceedings of workshop on machine learning systems (LearningSys) in the …, 2015 | 792 | 2015 |

A least-squares approach to direct importance estimation T Kanamori, S Hido, M Sugiyama The Journal of Machine Learning Research 10, 1391-1445, 2009 | 371 | 2009 |

Roughly balanced bagging for imbalanced data S Hido, H Kashima, Y Takahashi Statistical Analysis and Data Mining: The ASA Data Science Journal 2 (5‐6 …, 2009 | 191 | 2009 |

Statistical outlier detection using direct density ratio estimation S Hido, Y Tsuboi, H Kashima, M Sugiyama, T Kanamori Knowledge and information systems 26 (2), 309-336, 2011 | 181 | 2011 |

Direct density ratio estimation for large-scale covariate shift adaptation Y Tsuboi, H Kashima, S Hido, S Bickel, M Sugiyama Journal of Information Processing 17, 138-155, 2009 | 119 | 2009 |

A linear-time graph kernel S Hido, H Kashima 2009 Ninth IEEE International Conference on Data Mining, 179-188, 2009 | 99 | 2009 |

Efficient direct density ratio estimation for non-stationarity adaptation and outlier detection T Kanamori, S Hido, M Sugiyama Advances in neural information processing systems, 809-816, 2009 | 83 | 2009 |

Inlier-based outlier detection via direct density ratio estimation S Hido, Y Tsuboi, H Kashima, M Sugiyama, T Kanamori 2008 Eighth IEEE International Conference on Data Mining, 223-232, 2008 | 79 | 2008 |

Unsupervised change analysis using supervised learning S Hido, T Idé, H Kashima, H Kubo, H Matsuzawa Pacific-Asia Conference on Knowledge Discovery and Data Mining, 148-159, 2008 | 64 | 2008 |

A density-ratio framework for statistical data processing M Sugiyama, T Kanamori, T Suzuki, S Hido, J Sese, I Takeuchi, L Wang IPSJ Transactions on Computer Vision and Applications 1, 183-208, 2009 | 47 | 2009 |

AMIOT: induced ordered tree mining in tree-structured databases S Hido, H Kawano Fifth IEEE International Conference on Data Mining (ICDM'05), 8 pp., 2005 | 39 | 2005 |

Jubatus: An open source platform for distributed online machine learning S Hido, S Tokui, S Oda NIPS 2013 Workshop on Big Learning, Lake Tahoe, 2013 | 34 | 2013 |

Cupy: A numpy-compatible library for nvidia gpu calculations R Okuta, Y Unno, D Nishino, S Hido, C Loomis Proceedings of Workshop on Machine Learning Systems (LearningSys) in The …, 2017 | 25 | 2017 |

Technique for classifying data S Hido US Patent 9,218,572, 2015 | 19 | 2015 |

System for inspecting information processing unit to which software update is applied S Hido, S Munetoh, S Suzuki, N Uramoto, S Yoshihama US Patent 8,887,146, 2014 | 19 | 2014 |

Machine learning heterogeneous edge device, method, and system D Okanohara, JB Clayton, T Nishikawa, S Hido, N Kubota, N Ota, S Tokui US Patent 9,990,587, 2018 | 14 | 2018 |

Increasing Availability of an Industrial Control System K Hamzaoui, S Hido, S Suzuki, S Yoshihama US Patent App. 13/365,626, 2012 | 14 | 2012 |

Information identification method, program product, and system using relative frequency S Hido, M Tatsubori US Patent 9,471,882, 2016 | 13 | 2016 |

Location estimation system, method and program S Hido, T Ide, H Kashima, S Suzuki, A Tajima, R Takahashi, T Takahashi, ... US Patent 8,138,974, 2012 | 13 | 2012 |

Modeling patent quality: A system for large-scale patentability analysis using text mining S Hido, S Suzuki, R Nishiyama, T Imamichi, R Takahashi, T Nasukawa, ... Information and Media Technologies 7 (3), 1180-1191, 2012 | 12 | 2012 |