Follow
Stefan Bauer
Title
Cited by
Cited by
Year
Challenging common assumptions in the unsupervised learning of disentangled representations
F Locatello, S Bauer, M Lucic, G Raetsch, S Gelly, B Schölkopf, O Bachem
International Conference on Machine Learning (ICML) 2019, 2019
7582019
Toward causal representation learning
B Schölkopf, F Locatello, S Bauer, NR Ke, N Kalchbrenner, A Goyal, ...
Proceedings of the IEEE 109 (5), 612-634, 2021
2052021
On the fairness of disentangled representations
F Locatello, G Abbati, T Rainforth, S Bauer, B Schölkopf, O Bachem
Neural Information Processing Systems (NeurIPS) 2019, 2019
1242019
Automatic human sleep stage scoring using deep neural networks
A Malafeev, D Laptev, S Bauer, X Omlin, A Wierzbicka, A Wichniak, ...
Frontiers in neuroscience, 781, 2018
952018
Disentangling factors of variation using few labels
F Locatello, M Tschannen, S Bauer, G Rätsch, B Schölkopf, O Bachem
International Conference on Learning Representations (ICLR) 2020, 2019
912019
Robustly disentangled causal mechanisms: Validating deep representations for interventional robustness
R Suter, D Miladinovic, B Schölkopf, S Bauer
International Conference on Machine Learning (ICML) 2019, 2019
88*2019
Learning neural causal models from unknown interventions
NR Ke, O Bilaniuk, A Goyal, S Bauer, H Larochelle, B Schölkopf, ...
arXiv preprint arXiv:1910.01075, 2019
752019
On the transfer of inductive bias from simulation to the real world: a new disentanglement dataset
MW Gondal, M Wüthrich, Đ Miladinović, F Locatello, M Breidt, V Volchkov, ...
Neural Information Processing Systems (NeurIPS) 2019, 2019
632019
Clinical predictive models for COVID-19: systematic study
P Schwab, ADM Schütte, B Dietz, S Bauer
Journal of medical Internet research 22 (10), e21439, 2020
502020
Causalworld: A robotic manipulation benchmark for causal structure and transfer learning
O Ahmed, F Träuble, A Goyal, A Neitz, M Wüthrich, Y Bengio, B Schölkopf, ...
International Conference on Learning Representations (ICLR) 2021, 2020
452020
Learning counterfactual representations for estimating individual dose-response curves
P Schwab, L Linhardt, S Bauer, JM Buhmann, W Karlen
Proceedings of the AAAI Conference on Artificial Intelligence 34 (04), 5612-5619, 2020
322020
On the Transfer of Disentangled Representations in Realistic Settings
A Dittadi, F Träuble, F Locatello, M Wüthrich, V Agrawal, O Winther, ...
International Conference on Learning Representations (ICLR) 2021, 2020
312020
Scalable variational inference for dynamical systems
NS Gorbach, S Bauer, JM Buhmann
Neural Information Processing Systems (NeurIPS) 2017, 2017
312017
Fast Gaussian process based gradient matching for parameter identification in systems of nonlinear ODEs
P Wenk, A Gotovos, S Bauer, NS Gorbach, A Krause, JM Buhmann
The 22nd International Conference on Artificial Intelligence and Statistics …, 2019
292019
Learning stable and predictive structures in kinetic systems
N Pfister, S Bauer, J Peters
Proceedings of the National Academy of Sciences 116 (51), 25405-25411, 2019
28*2019
Towards causal representation learning
B Schölkopf, F Locatello, S Bauer, NR Ke, N Kalchbrenner, A Goyal, ...
arXiv preprint arXiv:2102.11107, 2021
272021
On Disentangled Representations Learned From Correlated Data
F Träuble, E Creager, N Kilbertus, F Locatello, A Dittadi, A Goyal, ...
International Conference on Machine Learning (ICML), 2020
262020
Adaptive skip intervals: Temporal abstraction for recurrent dynamical models
A Neitz, G Parascandolo, S Bauer, B Schölkopf
Neural Information Processing Systems (NeurIPS) 2018, 2018
262018
Trifinger: An open-source robot for learning dexterity
M Wüthrich, F Widmaier, F Grimminger, J Akpo, S Joshi, V Agrawal, ...
Conference on Robot Learning (CoRL) 2020, 2020
252020
Odin: Ode-informed regression for parameter and state inference in time-continuous dynamical systems
P Wenk, G Abbati, MA Osborne, B Schölkopf, A Krause, S Bauer
Proceedings of the AAAI Conference on Artificial Intelligence 34 (04), 6364-6371, 2020
252020
The system can't perform the operation now. Try again later.
Articles 1–20