Critical assessment of automated flow cytometry data analysis techniques N Aghaeepour, G Finak, H Hoos, TR Mosmann, R Brinkman, R Gottardo, ... Nature methods 10 (3), 228-238, 2013 | 474 | 2013 |

Limited rank matrix learning, discriminative dimension reduction and visualization K Bunte, P Schneider, B Hammer, FM Schleif, T Villmann, M Biehl Neural Networks 26, 159-173, 2012 | 104 | 2012 |

Regularization in matrix relevance learning P Schneider, K Bunte, H Stiekema, B Hammer, T Villmann, M Biehl IEEE Transactions on Neural Networks 21 (5), 831-840, 2010 | 92 | 2010 |

Learning effective color features for content based image retrieval in dermatology K Bunte, M Biehl, MF Jonkman, N Petkov Pattern Recognition 44 (9), 1892-1902, 2011 | 87 | 2011 |

A general framework for dimensionality-reducing data visualization mapping K Bunte, M Biehl, B Hammer Neural Computation 24 (3), 771-804, 2012 | 81 | 2012 |

Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis SK Sieberts, F Zhu, J García-García, E Stahl, A Pratap, G Pandey, ... Nature communications 7 (1), 1-10, 2016 | 69 | 2016 |

Stochastic neighbor embedding (SNE) for dimension reduction and visualization using arbitrary divergences K Bunte, S Haase, M Biehl, T Villmann Neurocomputing 90, 23-45, 2012 | 67 | 2012 |

Adaptive local dissimilarity measures for discriminative dimension reduction of labeled data K Bunte, B Hammer, A Wismüller, M Biehl Neurocomputing 73 (7-9), 1074-1092, 2010 | 53 | 2010 |

Neighbor embedding XOM for dimension reduction and visualization K Bunte, B Hammer, T Villmann, M Biehl, A Wismüller Neurocomputing 74 (9), 1340-1350, 2011 | 46 | 2011 |

Exploratory observation machine (xom) with kullback-leibler divergence for dimensionality reduction and visualization. K Bunte, B Hammer, T Villmann, M Biehl, A Wismüller ESANN 10, 87-92, 2010 | 45 | 2010 |

Analysis of flow cytometry data by matrix relevance learning vector quantization M Biehl, K Bunte, P Schneider PLoS One 8 (3), e59401, 2013 | 44 | 2013 |

Texture feature ranking with relevance learning to classify interstitial lung disease patterns MB Huber, K Bunte, MB Nagarajan, M Biehl, LA Ray, A Wismüller Artificial intelligence in medicine 56 (2), 91-97, 2012 | 35 | 2012 |

Sparse group factor analysis for biclustering of multiple data sources K Bunte, E Leppäaho, I Saarinen, S Kaski Bioinformatics 32 (16), 2457-2463, 2016 | 33 | 2016 |

Large margin linear discriminative visualization by matrix relevance learning M Biehl, K Bunte, FM Schleif, P Schneider, T Villmann The 2012 International Joint Conference on Neural Networks (IJCNN), 1-8, 2012 | 21 | 2012 |

Optimal neighborhood preserving visualization by maximum satisfiability K Bunte, M Järvisalo, J Berg, P Myllymäki, J Peltonen, S Kaski Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014 | 20 | 2014 |

Discriminative visualization by limited rank matrix learning K Bunte, P Schneider, B Hammer, FM Schleif, T Villmann, M Biehl Machine Learning Reports 2, 37-51, 2008 | 20 | 2008 |

Waypoint averaging and step size control in learning by gradient descent G Papari, K Bunte, M Biehl Machine Learning Reports 6, 16, 2011 | 19 | 2011 |

Dimensionality reduction mappings K Bunte, M Biehl, B Hammer 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM …, 2011 | 15 | 2011 |

A community challenge for inferring genetic predictors of gene essentialities through analysis of a functional screen of cancer cell lines M Gönen, BA Weir, GS Cowley, F Vazquez, Y Guan, A Jaiswal, ... Cell systems 5 (5), 485-497. e3, 2017 | 14 | 2017 |

Adaptive matrices and filters for color texture classification I Giotis, K Bunte, N Petkov, M Biehl Journal of Mathematical Imaging and Vision 47 (1-2), 79-92, 2013 | 14 | 2013 |