Thomas R. Oxland
Thomas R. Oxland
Professor of Orthopaedics and Mechanical Engineering, University of British Columbia
Verified email at
Cited by
Cited by
Three-dimensional movements of the whole lumbar spine and lumbosacral joint
I Yamamoto, MM Panjabi, T Crisco, TOM Oxland
Spine 14 (11), 1256-1260, 1989
Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves.
MM Panjabi, TR Oxland, I Yamamoto, JJ Crisco
JBJS 76 (3), 413-424, 1994
Biomechanical evaluation of lumbar spinal stability after graded facetectomies.
K Abumi, MM Panjabi, KM Kramer, J Duranceau, T Oxland, JJ Crisco
Spine 15 (11), 1142-1147, 1990
Spinal stability and intersegmental muscle forces: a biomechanical model
M Panjabi, K Abumi, J Duranceau, T Oxland
Spine 14 (2), 194-200, 1989
Interface shear strength of titanium implants with a sandblasted and acid‐etched surface: a biomechanical study in the maxilla of miniature pigs
D Buser, T Nydegger, T Oxland, DL Cochran, RK Schenk, HP Hirt, ...
Journal of Biomedical Materials Research: An Official Journal of The Society …, 1999
Human lumbar vertebrae. Quantitative three-dimensional anatomy.
MM Panjabi, V Goel, T Oxland, K Takata, J Duranceau, M Krag, M Price
Spine 17 (3), 299-306, 1992
Cervical human vertebrae. Quantitative three-dimensional anatomy of the middle and lower regions.
MM Panjabi, J Duranceau, V Goel, T Oxland, K Takata
Spine 16 (8), 861-869, 1991
Disc degeneration affects the multidirectional flexibility of the lumbar spine.
M Mimura, MM Panjabi, TR Oxland, JJ Crisco, I Yamamoto, A Vasavada
Spine 19 (12), 1371-1380, 1994
Articular facets of the human spine quantitative three-dimensional anatomy
MM Panjabi, T Oxland, K Takata, V Goel, J Duranceau, M Krag
Spine 18 (10), 1298-1310, 1993
Thoracic human vertebrae. Quantitative three-dimensional anatomy.
MM Panjabi, K Takata, V Goel, D Federico, T Oxland, J Duranceau, ...
Spine 16 (8), 888-901, 1991
Mapping the structural properties of the lumbosacral vertebral endplates
JP Grant, TR Oxland, MF Dvorak
Spine 26 (8), 889-896, 2001
Euler stability of the human ligamentous lumbar spine. Part II: Experiment
JJ Crisco, MM Panjabi, I Yamamoto, TR Oxland
Clinical biomechanics 7 (1), 27-32, 1992
Cervical spine stabilization system
TR Oxland, DW Kohrs, D Erickson, P Sand
US Patent 5,676,666, 1997
Interbody cage stabilisation in the lumbar spine: biomechanical evaluation of cage design, posterior instrumentation and bone density
T Lund, TR Oxland, B Jost, P Cripton, S Grassmann, C Etter, LP Nolte
The Journal of Bone & Joint Surgery British Volume 80 (2), 351-359, 1998
Biomechanical characterization of the three-dimensional kinematic behaviour of the Dynesys dynamic stabilization system: an in vitro study
CA Niosi, QA Zhu, DC Wilson, O Keynan, DR Wilson, TR Oxland
European Spine Journal 15, 913-922, 2006
Animal models used in spinal cord regeneration research
BK Kwon, TR Oxland, W Tetzlaff
Spine 27 (14), 1504-1510, 2002
Biomechanics of stand-alone cages and cages in combination with posterior fixation: a literature review
TR Oxland, T Lund
European spine journal 9, S095-S101, 2000
Symposium: a critical discrepancy—a criteria of successful arthrodesis following interbody spinal fusions
PC McAfee, SD Boden, JW Brantigan, RD Fraser, SD Kuslich, TR Oxland, ...
Spine 26 (3), 320-334, 2001
Compressive strength of interbody cages in the lumbar spine: the effect of cage shape, posterior instrumentation and bone density
B Jost, PA Cripton, T Lund, TR Oxland, K Lippuner, P Jaeger, LP Nolte
European Spine Journal 7, 132-141, 1998
Quantitative anatomy of cervical spine ligaments. Part I. Upper cervical spine
MM Panjabi, TR Oxland, EH Parks
Clinical Spine Surgery 4 (3), 270-276, 1991
The system can't perform the operation now. Try again later.
Articles 1–20