On simultaneous approximation by modified Baskakov operators RP Sinha, PN Agrawal, V Gupta Bull. Soc. Math. Belg. Ser. B 43 (2), 217-231, 1991 | 66 | 1991 |
Modified Szâsz operators HS Kasana, G Prasad, PN Agrawal, A Sahai Mathematical Analysis and its Applications, 29-41, 1988 | 60 | 1988 |
On q-analogue of Bernstein–Schurer–Stancu operators PN Agrawal, V Gupta, AS Kumar Applied Mathematics and Computation 219 (14), 7754-7764, 2013 | 59 | 2013 |
Some approximation properties of Baskakov–Durrmeyer–Stancu operators DK Verma, V Gupta, PN Agrawal Applied Mathematics and Computation 218 (11), 6549-6556, 2012 | 59 | 2012 |
Approximation of unbounded functions by a new sequence of linear positive operators PN Agrawal, KJ Thamer Journal of mathematical analysis and applications 225 (2), 660-672, 1998 | 59 | 1998 |
Szász–Durrmeyer type operators based on Charlier polynomials A Kajla, PN Agrawal Applied Mathematics and Computation 268, 1001-1014, 2015 | 57 | 2015 |
Generalized baskakov-szász type operators PN Agrawal, V Gupta, AS Kumar, A Kajla Applied Mathematics and Computation 236, 311-324, 2014 | 57 | 2014 |
Degree of approximation for bivariate Chlodowsky–Szász–Charlier type operators PN Agrawal, N İspir Results in Mathematics 69, 369-385, 2016 | 45 | 2016 |
Baskakov–Szász-type operators based on inverse Pólya–Eggenberger distribution A Kajla, AM Acu, PN Agrawal | 44 | 2017 |
GBS operators of Lupaş–Durrmeyer type based on Pólya distribution PN Agrawal, N Ispir, A Kajla Results in Mathematics 69, 397-418, 2016 | 43 | 2016 |
On a Modification of (p, q)-Szász–Mirakyan Operators T Acar, PN Agrawal, AS Kumar Complex Analysis and Operator Theory 12, 155-167, 2018 | 40 | 2018 |
Convergence in simultaneous approximation for Srivastava-Gupta operators DK Verma, PN Agrawal Mathematical Sciences 6, 1-8, 2012 | 38 | 2012 |
Approximation properties of Bezier-summation-integral type operators based on Polya–Bernstein functions PN Agrawal, N Ispir, A Kajla Applied Mathematics and Computation 259, 533-539, 2015 | 36 | 2015 |
Approximation properties of Lupas–Kantorovich operators based on Polya distribution PN Agrawal, N Ispir, A Kajla Rendiconti del Circolo Matematico di Palermo Series 2 65, 185-208, 2016 | 34 | 2016 |
Better approximation of functions by genuine Bernstein-Durrmeyer type operators AM Acu, PN Agrawal arXiv preprint arXiv:1810.06822, 2018 | 32 | 2018 |
Approximation properties of Szász type operators based on Charlier polynomials A Kajla, PN Agrawal Turkish Journal of Mathematics 39 (6), 990-1003, 2015 | 31 | 2015 |
GBS operators of Bernstein–Schurer–Kantorovich type based on q-integers M Sidharth, N Ispir, PN Agrawal Applied Mathematics and Computation 269, 558-568, 2015 | 30 | 2015 |
Approximation of functions on [0,∞] by a new sequence of modified Szász operators G Prasad, PN Agrawal, HS Kasana Math. Forum 6 (2), 1-11, 1983 | 30 | 1983 |
Simultaneous approximation by certain Baskakov–Durrmeyer–Stancu operators V Gupta, DK Verma, PN Agrawal Journal of the Egyptian Mathematical Society 20 (3), 183-187, 2012 | 28 | 2012 |
Inverse and saturation theorems for linear combination of modified Baskakov operators HS Kasana, PN Agrawal, V Gupta Approximation Theory and its Applications 7, 65-82, 1991 | 28 | 1991 |