Local convergence analysis of the Gauss–Newton method under a majorant condition OP Ferreira, MLN Gonçalves, PR Oliveira Journal of Complexity 27 (1), 111-125, 2011 | 57 | 2011 |

Convergence of the Gauss--Newton method for convex composite optimization under a majorant condition OP Ferreira, MLN Gonçalves, PR Oliveira SIAM Journal on Optimization 23 (3), 1757-1783, 2013 | 40 | 2013 |

Convergence rate bounds for a proximal ADMM with over-relaxation stepsize parameter for solving nonconvex linearly constrained problems MLN Gonçalves, JG Melo, RDC Monteiro arXiv preprint arXiv:1702.01850, 2017 | 31 | 2017 |

Improved pointwise iteration-complexity of a regularized ADMM and of a regularized non-euclidean HPE framework MLN Gonçalves, JG Melo, RDC Monteiro SIAM Journal on Optimization 27 (1), 379-407, 2017 | 27 | 2017 |

Local convergence analysis of inexact Newton-like methods under majorant condition OP Ferreira, MLN Gonçalves Computational Optimization and Applications 48 (1), 1-21, 2011 | 27 | 2011 |

Local convergence analysis of inexact Gauss–Newton like methods under majorant condition OP Ferreira, MLN Gonçalves, PR Oliveira Journal of Computational and Applied Mathematics 236 (9), 2487-2498, 2012 | 25 | 2012 |

A Newton conditional gradient method for constrained nonlinear systems MLN Gonçalves, JG Melo Journal of Computational and Applied Mathematics 311, 473-483, 2017 | 23 | 2017 |

Extending the ergodic convergence rate of the proximal ADMM MLN Gonçalves, JG Melo, RDC Monteiro arXiv preprint arXiv:1611.02903, 2016 | 18 | 2016 |

Local convergence of the Gauss–Newton method for injective-overdetermined systems of equations under a majorant condition MLN Gonçalves Computers & Mathematics with Applications 66 (4), 490-499, 2013 | 16 | 2013 |

An inexact Newton-like conditional gradient method for constrained nonlinear systems MLN Gonçalves, FR Oliveira Applied Numerical Mathematics 132, 22-34, 2018 | 14 | 2018 |

Convergence of the Gauss–Newton method for a special class of systems of equations under a majorant condition MLN Gonçalves, PR Oliveira Optimization 64 (3), 577-594, 2015 | 14 | 2015 |

Pointwise and ergodic convergence rates of a variable metric proximal alternating direction method of multipliers MLN Gonçalves, MM Alves, JG Melo Journal of Optimization Theory and Applications 177 (2), 448-478, 2018 | 13 | 2018 |

Inexact Gauss-Newton like methods for injective-overdetermined systems of equations under a majorant condition MLN Gonçalves Numerical Algorithms 72 (2), 377-392, 2016 | 11 | 2016 |

Iteration-complexity analysis of a generalized alternating direction method of multipliers VA Adona, MLN Gonçalves, JG Melo Journal of Global Optimization 73 (2), 331-348, 2019 | 9 | 2019 |

Augmented Lagrangian methods for nonlinear programming with possible infeasibility MLN Gonçalves, JG Melo, LF Prudente Journal of Global Optimization 63 (2), 297-318, 2015 | 8 | 2015 |

On the extension of the Hager–Zhang conjugate gradient method for vector optimization MLN Gonçalves, LF Prudente Computational Optimization and Applications 76 (3), 889-916, 2020 | 5 | 2020 |

A partially inexact proximal alternating direction method of multipliers and its iteration-complexity analysis VA Adona, MLN Gonçalves, JG Melo Journal of Optimization Theory and Applications 182 (2), 640-666, 2019 | 5 | 2019 |

On the pointwise iteration-complexity of a dynamic regularized ADMM with over-relaxation stepsize MLN Gonçalves Applied Mathematics and Computation 336, 315-325, 2018 | 5 | 2018 |

Inexact Variable Metric Method for Convex-Constrained Optimization Problems DS Gonçalves, MLN Gonçalves, TC Menezes | 3 | 2020 |

An inexact proximal generalized alternating direction method of multipliers VA Adona, MLN Gonçalves, JG Melo Computational Optimization and Applications 76, 621-647, 2020 | 3 | 2020 |