Follow
Rodrigo Toro Icarte
Title
Cited by
Cited by
Year
Using reward machines for high-level task specification and decomposition in reinforcement learning
R Toro Icarte, T Klassen, R Valenzano, S McIlraith
International Conference on Machine Learning, 2112-2121, 2018
291*2018
LTL and Beyond: Formal Languages for Reward Function Specification in Reinforcement Learning
A Camacho, R Toro Icarte, TQ Klassen, R Valenzano, SA McIlraith
Proceedings of the 28th International Joint Conference on Artificial …, 2019
2242019
Reward Machines: Exploiting Reward Function Structure in Reinforcement Learning
R Toro Icarte, TQ Klassen, R Valenzano, SA McIlraith
arXiv preprint arXiv:2010.03950, 2020
159*2020
Teaching multiple tasks to an RL agent using LTL
R Toro Icarte, TQ Klassen, R Valenzano, SA McIlraith
Proceedings of the 17th International Conference on Autonomous Agents and …, 2018
1372018
Learning Reward Machines for Partially Observable Reinforcement Learning
R Toro Icarte, E Waldie, T Klassen, R Valenzano, M Castro, S McIlraith
Advances in Neural Information Processing Systems, 15497-15508, 2019
1242019
Symbolic Plans as High-Level Instructions for Reinforcement Learning
L Illanes, X Yan, R Toro Icarte, SA McIlraith
Proceedings of the International Conference on Automated Planning and …, 2020
1042020
LTL2Action: Generalizing LTL Instructions for Multi-Task RL
P Vaezipoor, A Li, R Toro Icarte, S McIlraith
arXiv preprint arXiv:2102.06858, 2021
612021
Advice-based exploration in model-based reinforcement learning
R Toro Icarte, TQ Klassen, RA Valenzano, SA McIlraith
Canadian Conference on Artificial Intelligence, 72-83, 2018
292018
Training Binarized Neural Networks using MIP and CP
R Toro Icarte, L Illanes, MP Castro, AA Cire, SA McIlraith, JC Beck
Proceedings of the 25th International Conference on Principles and Practice …, 2019
272019
How a general-purpose commonsense ontology can improve performance of learning-based image retrieval
R Toro Icarte, JA Baier, C Ruz, A Soto
arXiv preprint arXiv:1705.08844, 2017
272017
Interpretable Sequence Classification via Discrete Optimization
M Shvo, AC Li, R Toro Icarte, SA McIlraith
arXiv preprint arXiv:2010.02819, 2020
152020
Be considerate: Avoiding negative side effects in reinforcement learning
P Alizadeh Alamdari, TQ Klassen, R Toro Icarte, SA McIlraith
Proceedings of the 21st International Conference on Autonomous Agents and …, 2022
132022
Symbolic Planning and Model-Free Reinforcement Learning: Training Taskable Agents
L Illanes, X Yan, R Toro Icarte, SA McIlraith
Proceedings of the 4th Multi-disciplinary Conference on Reinforcement …, 2019
122019
Solving task scheduling problems in dew computing via deep reinforcement learning
P Sanabria, TF Tapia, R Toro Icarte, A Neyem
Applied Sciences 12 (14), 7137, 2022
92022
AppBuddy: Learning to Accomplish Tasks in Mobile Apps via Reinforcement Learning.
M Shvo, Z Hu, RT Icarte, I Mohomed, AD Jepson, SA McIlraith
Canadian Conference on AI, 2021
82021
Learning reward machines: A study in partially observable reinforcement learning
RT Icarte, TQ Klassen, R Valenzano, MP Castro, E Waldie, SA McIlraith
Artificial Intelligence 323, 103989, 2023
72023
Using Advice in Model-Based Reinforcement Learning
R Toro Icarte, TQ Klassen, R Valenzano, SA McIlraith
The 3rd Multidisciplinary Conference on Reinforcement Learning and Decision …, 2017
7*2017
Noisy symbolic abstractions for deep RL: A case study with reward machines
AC Li, Z Chen, P Vaezipoor, TQ Klassen, RT Icarte, SA McIlraith
arXiv preprint arXiv:2211.10902, 2022
62022
The act of remembering: a study in partially observable reinforcement learning
R Toro Icarte, R Valenzano, TQ Klassen, P Christoffersen, A Farahmand, ...
arXiv preprint arXiv:2010.01753, 2020
62020
Searching for Markovian Subproblems to Address Partially Observable Reinforcement Learning
R Toro Icarte, E Waldie, TQ Klassen, R Valenzano, MP Castro, ...
Proceedings of the 4th Multi-disciplinary Conference on Reinforcement …, 2019
6*2019
The system can't perform the operation now. Try again later.
Articles 1–20