Chloé-Agathe Azencott
Chloé-Agathe Azencott
Verified email at
Cited by
Cited by
The evaluation of tools used to predict the impact of missense variants is hindered by two types of circularity
DG Grimm, CA Azencott, F Aicheler, U Gieraths, DG MacArthur, ...
Human mutation 36 (5), 513-523, 2015
Learning to predict chemical reactions
MA Kayala, CA Azencott, JH Chen, P Baldi
Journal of chemical information and modeling 51 (9), 2209-2222, 2011
A CROC stronger than ROC: measuring, visualizing and optimizing early retrieval
SJ Swamidass, CA Azencott, K Daily, P Baldi
Bioinformatics 26 (10), 1348-1356, 2010
Prediction of human population responses to toxic compounds by a collaborative competition
F Eduati, LM Mangravite, T Wang, H Tang, JC Bare, R Huang, T Norman, ...
Nature biotechnology 33 (9), 933-940, 2015
Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis
SK Sieberts, F Zhu, J García-García, E Stahl, A Pratap, G Pandey, ...
Nature communications 7 (1), 12460, 2016
Machine learning and genomics: precision medicine versus patient privacy
CA Azencott
Philosophical Transactions of the Royal Society A: Mathematical, Physical …, 2018
One-to four-dimensional kernels for virtual screening and the prediction of physical, chemical, and biological properties
CA Azencott, A Ksikes, SJ Swamidass, JH Chen, L Ralaivola, P Baldi
Journal of chemical information and modeling 47 (3), 965-974, 2007
Efficient network-guided multi-locus association mapping with graph cuts
CA Azencott, D Grimm, M Sugiyama, Y Kawahara, KM Borgwardt
Bioinformatics 29 (13), i171-i179, 2013
Block HSIC Lasso: model-free biomarker detection for ultra-high dimensional data
H Climente-González, CA Azencott, S Kaski, M Yamada
Bioinformatics 35 (14), i427-i435, 2019
Influence relevance voting: an accurate and interpretable virtual high throughput screening method
SJ Swamidass, CA Azencott, TW Lin, H Gramajo, SC Tsai, P Baldi
Journal of chemical information and modeling 49 (4), 756-766, 2009
GLIDE: GPU-based linear regression for detection of epistasis
T Kam-Thong, CA Azencott, L Cayton, B Pütz, A Altmann, N Karbalai, ...
Human heredity 73 (4), 220-236, 2012
Introduction au Machine Learning-2e éd.
CA Azencott
Dunod, 2022
pyComBat, a Python tool for batch effects correction in high-throughput molecular data using empirical Bayes methods
A Behdenna, M Colange, J Haziza, A Gema, G Appé, CA Azencott, ...
BMC bioinformatics 24 (1), 459, 2023
Multi-task feature selection on multiple networks via maximum flows
M Sugiyama, CA Azencott, D Grimm, Y Kawahara, KM Borgwardt
Proceedings of the 2014 SIAM International Conference on Data Mining, 199-207, 2014
Efficient multi-task chemogenomics for drug specificity prediction
B Playe, CA Azencott, V Stoven
PloS one 13 (10), e0204999, 2018
Novel methods for epistasis detection in genome-wide association studies
L Slim, C Chatelain, CA Azencott, JP Vert
PLoS One 15 (11), e0242927, 2020
Drug target identification with machine learning: How to choose negative examples
M Najm, CA Azencott, B Playe, V Stoven
International journal of molecular sciences 22 (10), 5118, 2021
The inconvenience of data of convenience: computational research beyond post-mortem analyses
CA Azencott, T Aittokallio, S Roy, T Norman, S Friend, G Stolovitzky, ...
Nature methods 14 (10), 937-938, 2017
kernelPSI: a post-selection inference framework for nonlinear variable selection
L Slim, C Chatelain, CA Azencott, JP Vert
International Conference on Machine Learning, 5857-5865, 2019
Boosting GWAS using biological networks: A study on susceptibility to familial breast cancer
H Climente-González, C Lonjou, F Lesueur, GENESIS Study Group, ...
PLoS computational biology 17 (3), e1008819, 2021
The system can't perform the operation now. Try again later.
Articles 1–20