The bulk-edge correspondence for continuous honeycomb lattices A Drouot Communications in Partial Differential Equations 44 (12), 1406-1430, 2019 | 45 | 2019 |
Microlocal analysis of the bulk-edge correspondence A Drouot Communications in Mathematical Physics 383, 2069-2112, 2021 | 42 | 2021 |
Defect modes for dislocated periodic media A Drouot, CL Fefferman, MI Weinstein Communications in Mathematical Physics 377 (3), 1637-1680, 2020 | 42 | 2020 |
Edge states and the valley Hall effect A Drouot, MI Weinstein Advances in Mathematics 368, 107142, 2020 | 42 | 2020 |
The bulk-edge correspondence for continuous dislocated systems A Drouot Annales de l'Institut Fourier 71 (3), 1185-1239, 2021 | 29 | 2021 |
Characterization of edge states in perturbed honeycomb structures A Drouot Pure and Applied Analysis 1 (3), 385-445, 2019 | 27 | 2019 |
Pollicott-Ruelle resonances via kinetic Brownian motion A Drouot arXiv preprint arXiv:1607.03841, 2016 | 23* | 2016 |
Edge state dynamics along curved interfaces G Bal, S Becker, A Drouot, CF Kammerer, J Lu, AB Watson SIAM Journal on Mathematical Analysis 55 (5), 4219-4254, 2023 | 22 | 2023 |
Sharp constant for a k-plane transform inequality A Drouot Analysis & PDE 7 (6), 1237-1252, 2014 | 18* | 2014 |
Scattering resonances for highly oscillatory potentials A Drouot arXiv preprint arXiv:1509.04198, 2015 | 17 | 2015 |
Topological insulators in semiclassical regime A Drouot arXiv preprint arXiv:2206.08238, 2022 | 14 | 2022 |
Ubiquity of conical points in topological insulators A Drouot Journal de l’École polytechnique—Mathématiques 8, 507-532, 2021 | 12 | 2021 |
A quantitative version of Hawking radiation A Drouot Annales Henri Poincaré 18, 757-806, 2017 | 12 | 2017 |
Magnetic slowdown of topological edge states G Bal, S Becker, A Drouot Communications on Pure and Applied Mathematics 77 (2), 1235-1277, 2024 | 10 | 2024 |
Bound states for rapidly oscillatory Schrödinger operators in dimension 2 A Drouot SIAM Journal on Mathematical Analysis 50 (2), 1471-1484, 2018 | 10* | 2018 |
Resonances for random highly oscillatory potentials A Drouot Journal of Mathematical Physics 59 (10), 2018 | 9 | 2018 |
A quantitative version of Catlin-D’Angelo–Quillen theorem A Drouot, M Zworski Analysis and Mathematical Physics 3 (1), 1-19, 2013 | 8 | 2013 |
Quantitative form of certain k-plane transform inequalities A Drouot Journal of Functional Analysis 268 (5), 1241-1276, 2015 | 7* | 2015 |
Topological edge spectrum along curved interfaces A Drouot, X Zhu International Mathematics Research Notices 2024 (22), 13870-13889, 2024 | 4 | 2024 |
Stability of resonances under singular perturbations A Drouot University of California, Berkeley, 2017 | 2 | 2017 |