Holomorphic anomaly equations and the Igusa cusp form conjecture G Oberdieck, A Pixton Inventiones mathematicae 213, 507-587, 2018 | 55 | 2018 |

Curve Counting on *K*3 × *E*, The Igusa Cusp Form χ10, and Descendent IntegrationG Oberdieck, R Pandharipande K3 surfaces and their moduli, 245-278, 2016 | 54 | 2016 |

Gromov–Witten theory of elliptic fibrations: Jacobi forms and holomorphic anomaly equations G Oberdieck, A Pixton Geometry & Topology 23 (3), 1415-1489, 2019 | 53 | 2019 |

Curve counting on abelian surfaces and threefolds J Bryan, G Oberdieck, R Pandharipande, Q Yin arXiv preprint arXiv:1506.00841, 2015 | 43 | 2015 |

Gromov–Witten invariants of the Hilbert schemes of points of a K3 surface G Oberdieck Geometry & Topology 22 (1), 323-437, 2017 | 40 | 2017 |

Motivic decompositions for the Hilbert scheme of points of a K3 surface A Neguţ, G Oberdieck, Q Yin Journal für die reine und angewandte Mathematik (Crelles Journal) 2021 (778 …, 2021 | 31 | 2021 |

Curve counting on elliptic Calabi–Yau threefolds via derived categories G Oberdieck, J Shen Journal of the European Mathematical Society 22 (3), 967-1002, 2019 | 26 | 2019 |

On reduced stable pair invariants G Oberdieck Mathematische Zeitschrift 289, 323-353, 2018 | 26 | 2018 |

A Serre derivative for even weight Jacobi forms G Oberdieck arXiv preprint arXiv:1209.5628, 2012 | 21 | 2012 |

Reduced Donaldson–Thomas invariants and the ring of dual numbers G Oberdieck, J Shen Proceedings of the London Mathematical Society 118 (1), 191-220, 2019 | 15 | 2019 |

Gromov–Witten theory of K3 surfaces and a Kaneko–Zagier equation for Jacobi forms JW van Ittersum, G Oberdieck, A Pixton Selecta Mathematica 27 (4), 64, 2021 | 14 | 2021 |

Gromov–Witten Theory of and Quasi-Jacobi Forms G Oberdieck International Mathematics Research Notices 2019 (16), 4966-5011, 2019 | 14 | 2019 |

CHL Calabi-Yau threefolds: Curve counting, Mathieu moonshine and Siegel modular forms J Bryan, G Oberdieck arXiv preprint arXiv:1811.06102, 2018 | 14 | 2018 |

A Lie algebra action on the Chow ring of the Hilbert scheme of points of a K3 surface G Oberdieck Commentarii Mathematici Helvetici 96 (1), 65-77, 2021 | 12 | 2021 |

Gromov–Witten theory and Noether–Lefschetz theory for holomorphic-symplectic varieties G Oberdieck Forum of Mathematics, Sigma 10, e21, 2022 | 10 | 2022 |

Stable pairs and Gopakumar-Vafa type invariants on holomorphic symplectic 4-folds Y Cao, G Oberdieck, Y Toda Advances in Mathematics 408, 108605, 2022 | 9 | 2022 |

Multiple cover formulas for K3 geometries, wallcrossing, and Quot schemes G Oberdieck arXiv preprint arXiv:2111.11239, 2021 | 9 | 2021 |

Equivariant categories of symplectic surfaces and fixed loci of Bridgeland moduli spaces T Beckmann, G Oberdieck arXiv preprint arXiv:2006.13899, 2020 | 9 | 2020 |

Rational curves in holomorphic symplectic varieties and Gromov–Witten invariants G Oberdieck, J Shen, Q Yin Advances in Mathematics 357, 106829, 2019 | 8 | 2019 |

Holomorphic anomaly equations for the Hilbert scheme of points of a K3 surface G Oberdieck arXiv preprint arXiv:2202.03361, 2022 | 7 | 2022 |