Follow
Frank Hutter
Frank Hutter
Professor of Computer Science, University of Freiburg, Germany
Verified email at cs.uni-freiburg.de - Homepage
Title
Cited by
Cited by
Year
Decoupled weight decay regularization
I Loshchilov, F Hutter
arXiv preprint arXiv:1711.05101, 2017
5370*2017
Sgdr: Stochastic gradient descent with warm restarts
I Loshchilov, F Hutter
arXiv preprint arXiv:1608.03983, 2016
37442016
Sequential model-based optimization for general algorithm configuration
F Hutter, HH Hoos, K Leyton-Brown
International conference on learning and intelligent optimization, 507-523, 2011
24572011
Efficient and robust automated machine learning
M Feurer, A Klein, K Eggensperger, J Springenberg, M Blum, F Hutter
Advances in neural information processing systems 28, 2015
18872015
Neural architecture search: A survey
T Elsken, JH Metzen, F Hutter
The Journal of Machine Learning Research 20 (1), 1997-2017, 2019
17732019
Deep learning with convolutional neural networks for EEG decoding and visualization
RT Schirrmeister, JT Springenberg, LDJ Fiederer, M Glasstetter, ...
Human brain mapping 38 (11), 5391-5420, 2017
14922017
Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms
C Thornton, F Hutter, HH Hoos, K Leyton-Brown
Proceedings of the 19th ACM SIGKDD international conference on Knowledge …, 2013
14772013
ParamILS: an automatic algorithm configuration framework
F Hutter, HH Hoos, K Leyton-Brown, T Stützle
Journal of Artificial Intelligence Research 36, 267-306, 2009
11132009
SATzilla: portfolio-based algorithm selection for SAT
L Xu, F Hutter, HH Hoos, K Leyton-Brown
Journal of artificial intelligence research 32, 565-606, 2008
10062008
Automated machine learning: methods, systems, challenges
F Hutter, L Kotthoff, J Vanschoren
Springer Nature, 2019
9812019
BOHB: Robust and efficient hyperparameter optimization at scale
S Falkner, A Klein, F Hutter
International Conference on Machine Learning, 1437-1446, 2018
7002018
Auto-WEKA: Automatic model selection and hyperparameter optimization in WEKA
L Kotthoff, C Thornton, HH Hoos, F Hutter, K Leyton-Brown
Automated Machine Learning, 81-95, 2019
6902019
Auto-WEKA: Automatic model selection and hyperparameter optimization in WEKA
L Kotthoff, C Thornton, HH Hoos, F Hutter, K Leyton-Brown
Automated Machine Learning, 81-95, 2019
6902019
Auto-WEKA 2.0: Automatic model selection and hyperparameter optimization in WEKA
L Kotthoff, C Thornton, HH Hoos, F Hutter, K Leyton-Brown
Journal of Machine Learning Research 18 (25), 1-5, 2017
6822017
Hyperparameter optimization
M Feurer, F Hutter
Automated machine learning, 3-33, 2019
6782019
Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves
T Domhan, JT Springenberg, F Hutter
Twenty-fourth international joint conference on artificial intelligence, 2015
5842015
Fast bayesian optimization of machine learning hyperparameters on large datasets
A Klein, S Falkner, S Bartels, P Hennig, F Hutter
Artificial intelligence and statistics, 528-536, 2017
4962017
Algorithm runtime prediction: Methods & evaluation
F Hutter, L Xu, HH Hoos, K Leyton-Brown
Artificial Intelligence 206, 79-111, 2014
4812014
Initializing Bayesian Hyperparameter Optimization via Meta-Learning.
M Feurer, JT Springenberg, F Hutter
AAAI, 1128-1135, 2015
462*2015
Efficient multi-objective neural architecture search via lamarckian evolution
T Elsken, JH Metzen, F Hutter
arXiv preprint arXiv:1804.09081, 2018
3982018
The system can't perform the operation now. Try again later.
Articles 1–20