Jens Behrmann
TitleCited byYear
Invertible residual networks
J Behrmann, W Grathwohl, RTQ Chen, D Duvenaud, JH Jacobsen
arXiv preprint arXiv:1811.00995, 2018
Deep learning for tumor classification in imaging mass spectrometry
J Behrmann, C Etmann, T Boskamp, R Casadonte, J Kriegsmann, P Maaβ
Bioinformatics 34 (7), 1215-1223, 2018
Excessive Invariance Causes Adversarial Vulnerability
JH Jacobsen, J Behrmann, R Zemel, M Bethge
arXiv preprint arXiv:1811.00401, 2018
Residual flows for invertible generative modeling
TQ Chen, J Behrmann, DK Duvenaud, JH Jacobsen
Advances in Neural Information Processing Systems, 9913-9923, 2019
Exploiting excessive invariance caused by norm-bounded adversarial robustness
JH Jacobsen, J Behrmann, N Carlini, F Tramer, N Papernot
arXiv preprint arXiv:1903.10484, 2019
Analysis of Invariance and Robustness via Invertibility of ReLU-Networks
J Behrmann, S Dittmer, P Fernsel, P Maaß
arXiv preprint arXiv:1806.09730, 2018
Fundamental Tradeoffs between Invariance and Sensitivity to Adversarial Perturbations
F Tramèr, J Behrmann, N Carlini, N Papernot, JH Jacobsen
arXiv preprint arXiv:2002.04599, 2020
Deep Relevance Regularization: Interpretable and Robust Tumor Typing of Imaging Mass Spectrometry Data
C Etmann, M Schmidt, J Behrmann, T Boskamp, L Hauberg-Lotte, A Peter, ...
arXiv preprint arXiv:1912.05459, 2019
The system can't perform the operation now. Try again later.
Articles 1–8