Follow
Kashif Rasul
Kashif Rasul
Zalando Research
Verified email at zalando.de
Title
Cited by
Cited by
Year
Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms
H Xiao, K Rasul, R Vollgraf
arXiv preprint arXiv:1708.07747, 2017
99262017
FLAIR: An easy-to-use framework for state-of-the-art NLP
A Akbik, T Bergmann, D Blythe, K Rasul, S Schweter, R Vollgraf
Proceedings of the 2019 conference of the North American chapter of the …, 2019
11312019
Lasagne: first release
S Dieleman, J Schlüter, C Raffel, E Olson, SK Sønderby, D Nouri, ...
Zenodo: Geneva, Switzerland 3, 74, 2015
442*2015
Diffusers: State-of-the-art diffusion models
P Von Platen, S Patil, A Lozhkov, P Cuenca, N Lambert, K Rasul, ...
4032022
Autoregressive denoising diffusion models for multivariate probabilistic time series forecasting
K Rasul, C Seward, I Schuster, R Vollgraf
International Conference on Machine Learning, 8857-8868, 2021
3112021
Multivariate probabilistic time series forecasting via conditioned normalizing flows
K Rasul, AS Sheikh, I Schuster, U Bergmann, R Vollgraf
arXiv preprint arXiv:2002.06103, 2020
2062020
Trl: Transformer reinforcement learning
L von Werra, Y Belkada, L Tunstall, E Beeching, T Thrush, N Lambert, ...
GitHub. Available online at: https://github. com/lvwerra/trl, 2020
1772020
Lag-llama: Towards foundation models for time series forecasting
K Rasul, A Ashok, AR Williams, A Khorasani, G Adamopoulos, ...
R0-FoMo: Robustness of Few-shot and Zero-shot Learning in Large Foundation …, 2023
117*2023
Modeling temporal data as continuous functions with process diffusion
M Biloš, K Rasul, A Schneider, Y Nevmyvaka, S Günnemann
52*2022
The alignment handbook
L Tunstall, E Beeching, N Lambert, N Rajani, S Huang, K Rasul, AM Rush, ...
432023
Provably convergent Schrödinger bridge with applications to probabilistic time series imputation
Y Chen, W Deng, S Fang, F Li, NT Yang, Y Zhang, K Rasul, S Zhe, ...
International Conference on Machine Learning, 4485-4513, 2023
272023
Deep Learning based Forecasting: a case study from the online fashion industry
M Kunz, S Birr, M Raslan, L Ma, T Januschowski
Forecasting with Artificial Intelligence: Theory and Applications, 279-311, 2023
232023
Probabilistic time series forecasting with implicit quantile networks
A Gouttes, K Rasul, M Koren, J Stephan, T Naghibi
arXiv preprint arXiv:2107.03743, 2021
232021
The gridlab grid application toolkit
G Allen, K Davis, T Dramlitsch, T Goodale, I Kelley, G Lanfermann, ...
Proceedings of 11th IEEE International Symposium on High Performance …, 2002
21*2002
Stackllama: An rl fine-tuned llama model for stack exchange question and answering, 2023
E Beeching, Y Belkada, K Rasul, L Tunstall, L von Werra, N Rajani, ...
URL https://huggingface. co/blog/stackllama 1 (4.1), 4.1, 2023
192023
Stochastic maximum likelihood optimization via hypernetworks
AS Sheikh, K Rasul, A Merentitis, U Bergmann
arXiv preprint arXiv:1712.01141, 2017
142017
The annotated diffusion model
N Rogge, K Rasul
Hugging Face Blog, 2022
122022
Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. CoRR (2017)
H Xiao, K Rasul, R Vollgraf
arXiv preprint arXiv:1708.07747, 0
10
Vq-ar: Vector quantized autoregressive probabilistic time series forecasting
K Rasul, YJ Park, MN Ramström, KM Kim
arXiv preprint arXiv:2205.15894, 2022
92022
Numinamath
J Li, E Beeching, L Tunstall, B Lipkin, R Soletskyi, SC Huang, K Rasul, ...
7*2024
The system can't perform the operation now. Try again later.
Articles 1–20