Alexander Rakhlin
Alexander Rakhlin
Associate Professor, MIT
Verified email at mit.edu - Homepage
Title
Cited by
Cited by
Year
Making gradient descent optimal for strongly convex stochastic optimization
A Rakhlin, O Shamir, K Sridharan
International Conference on Machine Learning (ICML), 2011
4692011
Competing in the dark: An efficient algorithm for bandit linear optimization
JD Abernethy, E Hazan, A Rakhlin
2812009
Non-convex learning via stochastic gradient Langevin dynamics: a nonasymptotic analysis
M Raginsky, A Rakhlin, M Telgarsky
arXiv preprint arXiv:1702.03849, 2017
1992017
Size-independent sample complexity of neural networks
N Golowich, A Rakhlin, O Shamir
Conference On Learning Theory, 297-299, 2018
1972018
Adaptive online gradient descent
PL Bartlett, E Hazan, A Rakhlin
Advances in Neural Information Processing Systems, 65-72, 2007
192*2007
Online learning with predictable sequences
A Rakhlin, K Sridharan
1592013
Optimization, learning, and games with predictable sequences
S Rakhlin, K Sridharan
Advances in Neural Information Processing Systems, 3066-3074, 2013
1502013
Online optimization: Competing with dynamic comparators
A Jadbabaie, A Rakhlin, S Shahrampour, K Sridharan
Artificial Intelligence and Statistics, 398-406, 2015
1342015
Optimal strategies and minimax lower bounds for online convex games
J Abernethy, PL Bartlett, A Rakhlin, A Tewari
1292008
Stability of -Means Clustering
A Rakhlin, A Caponnetto
Advances in neural information processing systems, 1121-1128, 2007
1172007
Stochastic convex optimization with bandit feedback
A Agarwal, DP Foster, D Hsu, SM Kakade, A Rakhlin
SIAM Journal on Optimization 23 (1), 213-240, 2013
1152013
Online learning: Random averages, combinatorial parameters, and learnability
A Rakhlin, K Sridharan, A Tewari
Advances in Neural Information Processing Systems, 1984-1992, 2010
112*2010
Just interpolate: Kernel “ridgeless” regression can generalize
T Liang, A Rakhlin
Annals of Statistics 48 (3), 1329-1347, 2020
1042020
Fisher-rao metric, geometry, and complexity of neural networks
T Liang, T Poggio, A Rakhlin, J Stokes
The 22nd International Conference on Artificial Intelligence and Statistics …, 2019
992019
A stochastic view of optimal regret through minimax duality
J Abernethy, A Agarwal, PL Bartlett, A Rakhlin
Conference on Learning Theory, 2009
912009
Partial monitoring—classification, regret bounds, and algorithms
G Bartók, DP Foster, D Pál, A Rakhlin, C Szepesvári
Mathematics of Operations Research 39 (4), 967-997, 2014
892014
Does data interpolation contradict statistical optimality?
M Belkin, A Rakhlin, AB Tsybakov
The 22nd International Conference on Artificial Intelligence and Statistics …, 2019
832019
High-probability regret bounds for bandit online linear optimization
PL Bartlett, V Dani, T Hayes, S Kakade, A Rakhlin, A Tewari
Conference on Learning Theory, 2008
812008
Online learning: Beyond regret
A Rakhlin, K Sridharan, A Tewari
732011
Distributed detection: Finite-time analysis and impact of network topology
S Shahrampour, A Rakhlin, A Jadbabaie
IEEE Transactions on Automatic Control 61 (11), 3256-3268, 2015
722015
The system can't perform the operation now. Try again later.
Articles 1–20