Follow
James Requeima
James Requeima
Verified email at cs.toronto.edu - Homepage
Title
Cited by
Cited by
Year
Fast and flexible multi-task classification using conditional neural adaptive processes
J Requeima, J Gordon, J Bronskill, S Nowozin, RE Turner
Advances in Neural Information Processing Systems, 7959-7970, 2019
2872019
Parallel and distributed Thompson sampling for large-scale accelerated exploration of chemical space
JM Hernández-Lobato, J Requeima, EO Pyzer-Knapp, A Aspuru-Guzik
Proceedings of the 34th International Conference on Machine Learning-Volume …, 2017
2142017
Convolutional Conditional Neural Processes
J Gordon, W Bruinsma, AYK Foong, J Requeima, Y Dubois, RE Turner
1782020
Tasknorm: Rethinking batch normalization for meta-learning
J Bronskill, J Gordon, J Requeima, S Nowozin, R Turner
International Conference on Machine Learning, 1153-1164, 2020
1192020
Meta-learning stationary stochastic process prediction with convolutional neural processes
A Foong, W Bruinsma, J Gordon, Y Dubois, J Requeima, R Turner
Advances in Neural Information Processing Systems 33, 2020
742020
Mapping Gaussian Process Priors to Bayesian Neural Networks
D Flam-Shepherd, J Requeima, D Duvenaud
NIPS Bayesian deep learning workshop, 2017
622017
The gaussian process autoregressive regression model (gpar)
J Requeima, W Tebbutt, W Bruinsma, RE Turner
The 22nd International Conference on Artificial Intelligence and Statistics …, 2019
492019
The Gaussian neural process
WP Bruinsma, J Requeima, AYK Foong, J Gordon, RE Turner
arXiv preprint arXiv:2101.03606, 2021
362021
Practical conditional neural processes via tractable dependent predictions
S Markou, J Requeima, WP Bruinsma, A Vaughan, RE Turner
arXiv preprint arXiv:2203.08775, 2022
262022
Meta-optimization of optimal power flow
M Jamei, L Mones, A Robson, L White, J Requeima, C Ududec
ICML Workshop on Climate Change: How Can AI Help, 2019
132019
Characterizing and Warping the Function Space of Bayesian Neural Networks
D Flam-Shepherd, J Requeima, D Duvenaud
NeurIPS Workshop on Bayesian Deep Learning, 2018
132018
Efficient gaussian neural processes for regression
S Markou, J Requeima, W Bruinsma, R Turner
arXiv preprint arXiv:2108.09676, 2021
122021
Environmental sensor placement with convolutional Gaussian neural processes
TR Andersson, WP Bruinsma, S Markou, J Requeima, A Coca-Castro, ...
Environmental Data Science 2, e32, 2023
112023
LLM Processes: Numerical Predictive Distributions Conditioned on Natural Language
J Requeima, J Bronskill, D Choi, RE Turner, D Duvenaud
arXiv preprint arXiv:2405.12856, 2024
82024
Challenges and pitfalls of Bayesian unlearning
A Rawat, J Requeima, W Bruinsma, R Turner
arXiv preprint arXiv:2207.03227, 2022
52022
Aardvark weather: end-to-end data-driven weather forecasting
A Vaughan, S Markou, W Tebbutt, J Requeima, WP Bruinsma, ...
arXiv preprint arXiv:2404.00411, 2024
42024
Sim2real for environmental neural processes
J Scholz, TR Andersson, A Vaughan, J Requeima, RE Turner
arXiv preprint arXiv:2310.19932, 2023
32023
Active Learning with Convolutional Gaussian Neural Processes for Environmental Sensor Placement
TR Andersson, WP Bruinsma, S Markou, DC Jones, JS Hosking, ...
arXiv preprint arXiv:2211.10381, 2022
32022
Translation Equivariant Transformer Neural Processes
M Ashman, C Diaconu, J Kim, L Sivaraya, S Markou, J Requeima, ...
arXiv preprint arXiv:2406.12409, 2024
22024
Diffusion-Augmented Neural Processes
L Bonito, J Requeima, A Shysheya, RE Turner
arXiv preprint arXiv:2311.09848, 2023
22023
The system can't perform the operation now. Try again later.
Articles 1–20