The Gaussian Process Autoregressive Regression Model (GPAR) J Requeima, W Tebbutt, W Bruinsma, RE Turner 22nd International Conference on Artificial Intelligence and Statistics, 2019 | 41 | 2019 |
Scalable Exact Inference in Multi-Output Gaussian Processes W Bruinsma, E Perim, W Tebbutt, S Hosking, A Solin, R Turner International Conference on Machine Learning, 1190-1201, 2020 | 26 | 2020 |
Convolutional conditional neural processes for local climate downscaling A Vaughan, W Tebbutt, JS Hosking, RE Turner Geoscientific Model Development 15 (1), 251-268, 2022 | 21 | 2022 |
Sparse Gaussian Process Variational Autoencoders M Ashman, J So, W Tebbutt, V Fortuin, M Pearce, RE Turner arXiv preprint arXiv:2010.10177, 2020 | 18 | 2020 |
AdvancedHMC. jl: A robust, modular and efficient implementation of advanced HMC algorithms K Xu, H Ge, W Tebbutt, M Tarek, M Trapp, Z Ghahramani Symposium on Advances in Approximate Bayesian Inference, 1-10, 2020 | 17 | 2020 |
Combining Pseudo-Point and State Space Approximations for Sum-Separable Gaussian Processes W Tebbutt, A Solin, RE Turner Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial …, 2021 | 9 | 2021 |
The Gaussian Process Latent Autoregressive Model R Xia, W Bruinsma, W Tebbutt, RE Turner Third Symposium on Advances in Approximate Bayesian Inference, 2020 | 3 | 2020 |
Circular Pseudo-Point Approximations for Scaling Gaussian Processes W Tebbutt, TD Bui, RE Turner Advances in Approximate Bayesian Inference, NIPS 2016 Workshop, 2016 | 1 | 2016 |
Advances in Software and Spatio-Temporal Modelling with Gaussian Processes W Tebbutt University of Cambridge, 2022 | | 2022 |