Long short-term memory S Hochreiter, J Schmidhuber Neural computation 9 (8), 1735-1780, 1997 | 48357 | 1997 |

Fast and accurate deep network learning by exponential linear units (elus) DA Clevert, T Unterthiner, S Hochreiter arXiv preprint arXiv:1511.07289, 2015 | 3384 | 2015 |

Gans trained by a two time-scale update rule converge to a local nash equilibrium M Heusel, H Ramsauer, T Unterthiner, B Nessler, S Hochreiter arXiv preprint arXiv:1706.08500, 2017 | 2695 | 2017 |

Gradient flow in recurrent nets: the difficulty of learning long-term dependencies S Hochreiter, Y Bengio, P Frasconi, J Schmidhuber A field guide to dynamical recurrent neural networks. IEEE Press, 2001 | 1886* | 2001 |

The vanishing gradient problem during learning recurrent neural nets and problem solutions S Hochreiter INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE BASED SYSTEMS 6 …, 1998 | 1544 | 1998 |

Self-normalizing neural networks G Klambauer, T Unterthiner, A Mayr, S Hochreiter arXiv preprint arXiv:1706.02515, 2017 | 1446 | 2017 |

Untersuchungen zu dynamischen neuronalen Netzen S Hochreiter Master's thesis, Institut fur Informatik, Technische Universitat, Munchen, 1991 | 848 | 1991 |

A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium SEQC Consortium Nature biotechnology 32 (9), 903, 2014 | 596 | 2014 |

LSTM can solve hard long time lag problems S Hochreiter, J Schmidhuber Advances in Neural Information Processing Systems 9: Proceedings of The 1996 …, 1997 | 591 | 1997 |

DeepTox: toxicity prediction using deep learning A Mayr, G Klambauer, T Unterthiner, S Hochreiter Frontiers in Environmental Science 3, 80, 2016 | 424 | 2016 |

Flat minima S Hochreiter, J Schmidhuber Neural Computation 9 (1), 1-42, 1997 | 423 | 1997 |

Learning to learn using gradient descent S Hochreiter, A Younger, P Conwell Artificial Neural Networks—ICANN 2001, 87-94, 2001 | 401 | 2001 |

cn. MOPS: mixture of Poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate G Klambauer, K Schwarzbauer, A Mayr, DA Clevert, A Mitterecker, ... Nucleic Acids Research 40 (9), e69-e69, 2012 | 340 | 2012 |

APCluster: an R package for affinity propagation clustering U Bodenhofer, A Kothmeier, S Hochreiter Bioinformatics 27 (17), 2463-2464, 2011 | 335 | 2011 |

FABIA: factor analysis for bicluster acquisition S Hochreiter, U Bodenhofer, M Heusel, A Mayr, A Mitterecker, A Kasim, ... Bioinformatics 26 (12), 1520-1527, 2010 | 306 | 2010 |

A new summarization method for Affymetrix probe level data S Hochreiter, DA Clevert, K Obermayer Bioinformatics 22 (8), 943-949, 2006 | 298 | 2006 |

GANs Trained by a Two Time-Scale Update Rule Converge to a Nash Equilibrium. M Heusel, H Ramsauer, T Unterthiner, B Nessler, G Klambauer, ... | 269 | 2017 |

msa: an R package for multiple sequence alignment U Bodenhofer, E Bonatesta, C Horejš-Kainrath, S Hochreiter Bioinformatics 31 (24), 3997-3999, 2015 | 214 | 2015 |

Large-scale comparison of machine learning methods for drug target prediction on ChEMBL A Mayr, G Klambauer, T Unterthiner, M Steijaert, JK Wegner, ... Chemical science 9 (24), 5441-5451, 2018 | 192 | 2018 |

Reinforcement driven information acquisition in non-deterministic environments J Storck, S Hochreiter, J Schmidhuber Proceedings of the international conference on artificial neural networks …, 1995 | 184 | 1995 |