Follow
AkshatKumar Nigam
AkshatKumar Nigam
Other namesAkshat Nigam
Verified email at stanford.edu - Homepage
Title
Cited by
Cited by
Year
Self-Referencing Embedded Strings (SELFIES): A 100% robust molecular string representation
M Krenn, F Hase, AK Nigam, P Friederich, A Aspuru-Guzik
Machine Learning: Science and Technology, 2020
301*2020
Data-driven strategies for accelerated materials design
R Pollice, G dos Passos Gomes, M Aldeghi, RJ Hickman, M Krenn, ...
Accounts of Chemical Research 54 (4), 849-860, 2021
1172021
Augmenting Genetic Algorithms with Deep Neural Networks for Exploring the Chemical Space
AK Nigam, P Friederich, M Krenn, A Aspuru-Guzik
International Conference on Learning Representations (ICLR)., 2020
832020
Beyond generative models: superfast traversal, optimization, novelty, exploration and discovery (STONED) algorithm for molecules using SELFIES
AK Nigam, R Pollice, M Krenn, G dos Passos Gomes, A Aspuru-Guzik
Chemical science 12 (20), 7079-7090, 2021
592021
A comprehensive discovery platform for organophosphorus ligands for catalysis
T Gensch, G dos Passos Gomes, P Friederich, E Peters, T Gaudin, ...
Journal of the American Chemical Society, 2021
352021
Assigning confidence to molecular property prediction
AK Nigam, R Pollice, MFD Hurley, RJ Hickman, M Aldeghi, N Yoshikawa, ...
Expert opinion on drug discovery 16 (9), 1009-1023, 2021
272021
Parallel tempered genetic algorithm guided by deep neural networks for inverse molecular design
AK Nigam, R Pollice, A Aspuru-Guzik
Digital Discovery, 2022
26*2022
Curiosity in exploring chemical space: Intrinsic rewards for deep molecular reinforcement learning
LA Thiede, M Krenn, AK Nigam, A Aspuru-Guzik
Machine Learning: Science and Technology 3 (3), 035008, 2020
16*2020
On scientific understanding with artificial intelligence
M Krenn, R Pollice, SY Guo, M Aldeghi, A Cervera-Lierta, P Friederich, ...
Nature Reviews Physics, 1-9, 2022
92022
SELFIES and the future of molecular string representations
M Krenn, Q Ai, S Barthel, N Carson, A Frei, NC Frey, P Friederich, ...
Patterns 3 (10), 100588, 2022
52022
Exploring the chemical space without bias: data-free molecule generation with DQN and SELFIES
T Gaudin, AK Nigam, A Aspuru-Guzik
NeurIPS-2019 MLPS Workshop, 0
2*
Tartarus: A benchmarking platform for realistic and practical inverse molecular design
AK Nigam, R Pollice, G Tom, K Jorner, LA Thiede, A Kundaje, ...
arXiv preprint arXiv:2209.12487, 2022
12022
The system can't perform the operation now. Try again later.
Articles 1–12