Manifold parametrizations by eigenfunctions of the Laplacian and heat kernels PW Jones, M Maggioni, R Schul Proceedings of the National Academy of Sciences 105 (6), 1803-1808, 2008 | 168 | 2008 |

Subsets of rectifiable curves in Hilbert space-the analyst’s TSP R Schul Journal d'Analyse Mathématique 103 (1), 331-375, 2007 | 67 | 2007 |

Universal local parametrizations via heat kernels and eigenfunctions of the laplacian PW Jones, M Maggioni, R Schul Ann. Acad. Sci. Fenn. Math 35 (1), 131-174., 2010 | 48 | 2010 |

Hard Sard: quantitative implicit function and extension theorems for Lipschitz maps J Azzam, R Schul Geometric and Functional Analysis 22 (5), 1062-1123, 2012 | 35 | 2012 |

A doubling measure on Rd can charge a rectifiable curve JB Garnett, R Killip, R Schul Proceedings of the American Mathematical Society 138 (5), 1673-1679, 2010 | 32 | 2010 |

Ahlfors-regular curves in metric spaces R Schul Annales Academiae scientarum Fennicae. Mathematica 32 (2), 437-460, 2007 | 28 | 2007 |

Analyst's traveling salesman theorems. A survey R Schul Contemporary Mathematics 432, 209, 2007 | 27 | 2007 |

The traveling salesman problem in the Heisenberg group: upper bounding curvature S Li, R Schul Transactions of the American Mathematical Society 368 (7), 4585-4620, 2016 | 25 | 2016 |

Multiscale analysis of 1-rectifiable measures: necessary conditions M Badger, R Schul Mathematische Annalen 361 (3-4), 1055-1072, 2015 | 25 | 2015 |

Multiscale analysis of 1-rectifiable measures II: characterizations M Badger, R Schul Analysis and Geometry in Metric Spaces 5 (1), 1-39, 2017 | 23 | 2017 |

An analyst’s traveling salesman theorem for sets of dimension larger than one J Azzam, R Schul Mathematische Annalen 370 (3-4), 1389-1476, 2018 | 22 | 2018 |

Two sufficient conditions for rectifiable measures M Badger, R Schul Proceedings of the Amer. Math. Soc, 2014 | 21 | 2014 |

An upper bound for the length of a Traveling Salesman path in the Heisenberg group S Li, R Schul Revista Matemática Iberoamericana; arXiv:1403.3951, 2014 | 19 | 2014 |

Bi-Lipschitz decomposition of Lipschitz functions into a metric space R Schul Revista Matemática Iberoamericana 25 (2), 521-531, 2009 | 18 | 2009 |

The Analyst's traveling salesman theorem in graph inverse limits GC David, R Schul arXiv preprint arXiv:1603.03077, 2016 | 15 | 2016 |

How to take shortcuts in Euclidean space: making a given set into a short quasi‐convex set J Azzam, R Schul Proceedings of the London Mathematical Society 105 (2), 367-392, 2012 | 8 | 2012 |

A quantitative metric differentiation theorem J Azzam, R Schul Proceedings of the American Mathematical Society 142 (4), 1351-1357, 2014 | 6 | 2014 |

A sharp necessary condition for rectifiable curves in metric spaces GC David, R Schul arXiv preprint arXiv:1902.04030, 2019 | 4 | 2019 |

Quantitative decompositions of Lipschitz mappings into metric spaces GC David, R Schul arXiv preprint arXiv:2002.10318, 2020 | 1 | 2020 |

Big-pieces-of-Lipschitz-images implies a sufficient Carleson estimate in a metric space R Schul arXiv preprint arXiv:0706.2517, 2007 | 1 | 2007 |