Hyperband: A novel bandit-based approach to hyperparameter optimization L Li, K Jamieson, G DeSalvo, A Rostamizadeh, A Talwalkar The Journal of Machine Learning Research 18 (1), 6765-6816, 2017 | 898* | 2017 |
Hyperband: Bandit-based Configuration Evaluation for Hyperparameter Optimization AT Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh ICLR, 2017 | 762* | 2017 |
Learning with rejection C Cortes, G DeSalvo, M Mohri International Conference on Algorithmic Learning Theory, 67-82, 2016 | 105 | 2016 |
Efficient hyperparameter optimization and infinitely many armed bandits L Li, KG Jamieson, G DeSalvo, A Rostamizadeh, A Talwalkar CoRR, abs/1603.06560 16, 2016 | 101 | 2016 |
Boosting with abstention C Cortes, G DeSalvo, M Mohri Advances in Neural Information Processing Systems 29, 1660-1668, 2016 | 41 | 2016 |
Precise measurement of laser power using an optomechanical system K Agatsuma, D Friedrich, S Ballmer, G DeSalvo, S Sakata, E Nishida, ... Optics express 22 (2), 2013-2030, 2014 | 19 | 2014 |
Online learning with abstention C Cortes, G DeSalvo, C Gentile, M Mohri, S Yang international conference on machine learning, 1059-1067, 2018 | 15 | 2018 |
Learning with deep cascades G DeSalvo, M Mohri, U Syed International Conference on Algorithmic Learning Theory, 254-269, 2015 | 11 | 2015 |
Region-based active learning C Cortes, G DeSalvo, C Gentile, M Mohri, N Zhang The 22nd International Conference on Artificial Intelligence and Statistics …, 2019 | 10 | 2019 |
2018 R Li, TJ Wang, PY Lyu, Y Liu, WH Chen, MY Fan 131 10, 4103, 2018 | 10 | 2018 |
Discrepancy-based algorithms for non-stationary rested bandits C Cortes, G DeSalvo, V Kuznetsov, M Mohri, S Yang arXiv preprint arXiv:1710.10657, 2017 | 10 | 2017 |
Active learning with disagreement graphs C Cortes, G DeSalvo, M Mohri, N Zhang, C Gentile International Conference on Machine Learning, 1379-1387, 2019 | 9 | 2019 |
Hyperband: A novel bandit-based approach to hyperparameter optimization. arXiv 2016 L Li, K Jamieson, G DeSalvo, A Rostamizadeh, A Talwalkar arXiv preprint arXiv:1603.06560, 2016 | 9 | 2016 |
Random composite forests G DeSalvo, M Mohri Proceedings of the AAAI Conference on Artificial Intelligence 30 (1), 2016 | 5 | 2016 |
Online learning with sleeping experts and feedback graphs C Cortes, G DeSalvo, C Gentile, M Mohri, S Yang International Conference on Machine Learning, 1370-1378, 2019 | 4 | 2019 |
Multi-armed bandits with non-stationary rewards C Cortes, G DeSalvo, V Kuznetsov, M Mohri, S Yand CoRR, abs/1710.10657, 2017 | 4 | 2017 |
Adaptive Region-Based Active Learning C Cortes, G DeSalvo, C Gentile, M Mohri, N Zhang International Conference on Machine Learning, 2144-2153, 2020 | 3 | 2020 |
Efficient hyperparameter optimization and infinitely many armed bandits A Rostamizadeh, A Talwalkar, G DeSalvo, K Jamieson, L Li | 3 | 2017 |
High accuracy measurement of the quantum efficiency using radiation pressure K Agatsuma, T Mori, S Ballmer, G DeSalvo, S Sakata, E Nishida, ... Journal of Physics: Conference Series 363 (1), 012002, 2012 | 1 | 2012 |
Online Learning with Dependent Stochastic Feedback Graphs C Cortes, G Desalvo, C Gentile, M Mohri, N Zhang International Conference on Machine Learning, 2154-2163, 2020 | | 2020 |