The remainder of certain linear approximation formulas in two variables DD Stancu Journal of the Society for Industrial and Applied Mathematics, Series B …, 1964 | 131 | 1964 |

Analiză numerică și teoria aproximării DD Stancu, G Coman, O Agratini, R Trîmbitaș Presa Universitară Clujeana, 2002 | 114 | 2002 |

Analiza numerica si teoria aproximarii, I DD Stancu, G Coman, O Agratini, R Trımbitas Presa Universitara Clujeana, Cluj-Napoca 1, 2001 | 110* | 2001 |

Asupra unei generalizari a polinoamelor lui Bernstein DD Stancu Studia Universitatis Babes-Bolyai 14 (2), 31-45, 1969 | 84 | 1969 |

Approximation of functions by means of a new generalized Bernstein operator DD Stancu Calcolo 20 (2), 211-229, 1983 | 81 | 1983 |

On a generalization of the Bernstein polynomials DD Stancu Studia Universitatis Babeş-Bolyai, Series Mathematica-Physica 14, 31-45, 1969 | 65 | 1969 |

Quadrature formulas with multiple Gaussian nodes AH Stroud, DD Stancu Journal of the Society for Industrial and Applied Mathematics, Series B …, 1965 | 57 | 1965 |

Evaluation of the remainder term in approximation formulas by Bernstein polynomials DD Stancu Mathematics of Computation 17 (83), 270-278, 1963 | 57 | 1963 |

On the Beta approximating operators of second type kind DD Stancu Rev. Anal. Numér. Théor. Approx., 231-239, 1995 | 55 | 1995 |

Quadrature formulas with simple Gaussian nodes and multiple fixed nodes DD Stancu, AH Stroud Mathematics of computation 17 (84), 384-394, 1963 | 46 | 1963 |

Sur quelques formules générales de quadrature du type Gauss-Christoffel DD Stancu Mathematica (Cluj) 1 (24), 167-182, 1959 | 45 | 1959 |

A method for obtaining polynomials of Bernstein type of two variables DD Stancu The American Mathematical Monthly 70 (3), 260-264, 1963 | 43 | 1963 |

Approximation of functions by means of some new classes of positive linear operators DD Stancu Numerische Methoden der Approximationstheorie, 187-203, 1972 | 39 | 1972 |

Two classes of positive linear operators DD Stancu Analele Univ. din Timisoara (Seria St. Mat.), 213-220, 1970 | 39 | 1970 |

A new class of uniform approximating polynomial operators in two and several variables DD Stancu Proc. of the Conf. on Constr. Theory of Functions, Budapest, 1969 | 39 | 1969 |

On the monotonicity of the sequence formed by the first order derivatives of the Bernstein polynomials DD Stancu Mathematische Zeitschrift 98 (1), 46-51, 1967 | 31 | 1967 |

On a new positive linear polynomial operator DD Stancu Proceedings of the Japan Academy 44 (4), 221-224, 1968 | 27 | 1968 |

Numerical analysis and approximation theory DD Stancu, G Coman, P Blaga Vol. II, Presa Universitara Clujeana, Cluj-Napoca, 2002 | 24 | 2002 |

On approximation by binomial operators of Tiberiu Popoviciu type DD Stancu, MR Occorsio Rev. Anal. Numér. Théor. Approx. 27 (1), 167-181, 1998 | 24 | 1998 |

The remainder in the approximation by a generalized Bernstein operator: a representation by a convex combination of second-order divided differences DD Stancu Calcolo 35 (1), 53-62, 1998 | 23 | 1998 |