Evaluation of interpretability methods for multivariate time series forecasting O Ozyegen, I Ilic, M Cevik Applied Intelligence, 1-17, 2022 | 32* | 2022 |
Experimental results on the impact of memory in neural networks for spectrum prediction in land mobile radio bands O Ozyegen, S Mohammadjafari, E Kavurmacioglu, J Maidens, AB Bener IEEE Transactions on Cognitive Communications and Networking 6 (2), 771-782, 2019 | 18 | 2019 |
Word-level text highlighting of medical texts for telehealth services O Ozyegen, D Kabe, M Cevik Artificial Intelligence in Medicine 127, 102284, 2022 | 17 | 2022 |
An empirical study on using CNNs for fast radio signal prediction O Ozyegen, S Mohammadjafari, M Cevik, K El Mokhtari, J Ethier, A Basar SN Computer Science 3 (2), 131, 2022 | 17* | 2022 |
Text classification for predicting multi-level product categories H Jahanshahi, O Ozyegen, M Cevik, B Bulut, D Yigit, FF Gonen, A Başar Proceedings of the 31st Annual International Conference on Computer Science …, 2021 | 9 | 2021 |
Designing mm-wave electromagnetic engineered surfaces using generative adversarial networks S Mohammadjafari, O Ozyegen, M Cevik, E Kavurmacioglu, J Ethier, ... Neural Computing and Applications 33, 11309-11323, 2021 | 8 | 2021 |
Classifying multi-level product categories using dynamic masking and transformer models O Ozyegen, H Jahanshahi, M Cevik, B Bulut, D Yigit, FF Gonen, A Başar Journal of Data, Information and Management 4 (1), 71-85, 2022 | 5 | 2022 |
Interpretable Time Series Clustering Using Local Explanations O Ozyegen, N Prayogo, M Cevik, A Basar arXiv preprint arXiv:2208.01152, 2022 | 2 | 2022 |
Generative adversarial networks in designing electromagnetic engineered surfaces for mm-wave band spectrum environments O Ozyegen, E Kavurmacioglu, J Ethier, A Başar Proceedings of the 29th Annual International Conference on Computer Science …, 2019 | 1 | 2019 |
A unified framework for financial commentary prediction O Ozyegen, G Malik, M Cevik, K Ioi, K El Mokhtari Information Technology and Management, 1-17, 2024 | | 2024 |
DANLIP: Deep Autoregressive Networks for Locally Interpretable Probabilistic Forecasting O Ozyegen, J Wang, M Cevik arXiv preprint arXiv:2301.02332, 2023 | | 2023 |
Local Interpretability Methods for Time Series Modeling O Ozyegen Toronto Metropolitan University, 0 | | |
Interpreting time series forecasting models using model class reliance S Berry, M Cevik, O Ozyegen | | |
Dnnlits: Deep Neural Networks for Locally Interpretable Time Series Forecasting O Ozyegen, M Cevik, A Basar Available at SSRN 4179881, 0 | | |